

MaXware

MailmaX.400 for Windows

Programmer's Guide

Edition 4.7

November 2020

This document is designed for MailmaX 400 V5.3 and newer

MaXware UA-FI, MaXware MailmaX.400 are trademarks of AddOnMail.

All other products or services mentioned in this document are identified by the trademarks or

service marks of their respective companies or organizations, and AddOnMail disclaims any

responsibility for specifying which marks are owned by which companies or organizations.

The information in this guide is subject to change without notice. The information does not

represent a commitment on the part of AddOnMail. AddOnMail is not responsible for any

errors that may appear in this manual. It is against the law to copy the documentation except

when specifically permitted by in the license or non-disclosure agreement. The manual, or

parts of the manual, may not be reproduced or transmitted in any form or by any means,

electronically or mechanically, including photocopying and recording, for any purpose,

without the express written permission of AddOnMail. No part of this publication may be

transcribed, stored in a retrieval system or translated into any language without the prior

written consent of AddOnMail.

Copyright © 1996-2003 MaXware AS

Copyright © 2004-2020 AddOnMail

Enquiries and orders to:

AddOnMail

4, rue des Frères Lumière

78370 Plaisir

France

Telephone: +33 (0)1 40 83 80 90

Sales: infos@addonmail.com

Support: support@addonmail.com

Web: http://www.addonmail.com

i

Table of contents
1. Introduction ... 1

1.1 Simple MAPI-compliant API .. 1

1.2 The Mail Spooler... 1

1.3 DDE calls to MailmaX.400 ... 1

1.4 MailmaX.400 for Windows application startup .. 1

1.5 Integration of customized Extension DLL .. 2

2. MaXware Simple MAPI functions... 3

2.1 Introduction ... 3

2.2 Return values ... 3

2.3 Prerequisites .. 3

2.4 How to use the MaXware Simple MAPI .. 3

2.5 MaXware Simple MAPI sessions ... 4

2.6 General C data types ... 4

2.7 MAPIFileDesc... 5

2.8 MAPIFileTagExt ... 7

2.9 MAPIMessage ... 9

2.10 MapiSecureOptions ... 11

2.11 MapiSecureMime .. 12

2.12 MAPIReceip .. 13

2.13 MAPILogon .. 15

2.14 MAPILogoff .. 17

2.15 MAPISendDocuments ... 18

2.16 MAPISendMail ... 19

2.17 MAPISendSecureMail .. 21

2.18 MAPISaveMail ... 23

2.19 MAPISaveSecureMail ... 25

2.20 MAPIFindNext .. 27

2.21 MAPIReadMail ... 29

2.22 MAPIReadSecureMail .. 32

2.23 MAPIFreeBuffer ... 35

2.24 MAPIDeleteMail ... 36

2.25 MAPIAddress .. 37

2.26 MAPIResolveName .. 39

2.27 MAPIDetails ... 40

2.28 MAPIMoveMail .. 41

2.29 MAPIExportArchive ... 42

2.30 MAPIEmptyWasteBasket ... 44

2.31 GetRecipientInformation ... 45
2.31.1 RecipientInformationDesc ... 46
2.31.2 RecipientDeliveryDesc .. 46

2.32 GetMessageInformation .. 48
2.32.1 MessageInformationDesc .. 49

2.33 MAPIFreeRecipientInformation ... 52

i i

2.34 MAPIFreeMessageInformation ... 53

2.35 Return values and error codes ... 54

2.36 Sending a file using C ... 57

2.37 Reading a message with C .. 58

2.38 Read unread messages with C ... 60

2.39 Delete messages with a certain subject ... 61

3. DDE programming with MailmaX.400 ... 62

3.1 Introduction ... 62

3.2 DDE Commands ... 63

3.3 Starting MailmaX.400 for Windows ... 65

3.4 C example ... 66

4. Controlling the communication process .. 67

4.1 Introduction to the MaXware Mail Spooler .. 67

4.2 Architecture ... 67

4.3 Basic features .. 68

4.4 Configuring the Mailbox Commands .. 68

4.5 Start the Mail Spooler ... 69

4.6 DDE commands to the Mail Spooler .. 70
4.6.1 Logon (User Name) ... 70
4.6.2 Connect(MailboxCommand) ... 70
4.6.3 IniFileChanged() ... 70
4.6.4 OUTTRAYChanged() .. 70
4.6.5 LogOff(LogOffFlag) .. 70

4.7 DDE Services from the Mail Spooler ... 71
4.7.1 State ... 71
4.7.2 Mail ... 71
4.7.3 ErrorText ... 71

4.8 DDE System topics ... 72

5. Hooks for calling an Extension DLL library .. 73

5.1 General .. 73

5.2 Routines and data structures in the Extension DLL library 74

5.3 Initialize .. 75

5.4 OnMessageOpen ... 77

5.5 OnMessageSave .. 79

5.6 OnSubmit .. 81

5.7 OnConnect .. 82

5.8 OnDisconnect .. 84

5.9 OnCommunicationStart ... 85

5.10 OnCommunicationEnd .. 86
5.10.1 Terminate .. 86

6. Start program from MailmaX.400 command ... 87

7. File viewers in MailmaX.400 .. 88

8. File format recognition ... 89

9. UA-FI based applications with MailmaX.400 ... 92

i i i

10. Address syntax ... 95

11. The MAXWARE.INI file .. 97

12. Address and message templates ... 98

13. Appendix B: MailFile - A MailmaX.400 extension 99

13.1 Introduction ... 99

13.2 Installation ... 100

13.3 MailFile – How it works ... 101
13.3.1 Some command-line examples: ... 101
13.3.2 Syntax of the address-list file: (/File=) ... 101

13.4 Hints .. 103
13.4.1 MailmaX.400 start-up: .. 103
13.4.2 Mail Spooler set-up ... 103
13.4.3 Run minimized ... 103
13.4.4 Automatic recognition of SMTP addresses ... 103

13.5 Known problems ... 104
13.5.1 Same message sent twice ... 104
13.5.2 Original file-name not (always) maintained ... 104

i v

1
Introduction
Mai lmaX.400 for Windows Programmer 's Guide

1. Introduction
This guide describes the various aspects and options you have available if you wish to

use MailmaX.400 for Windows to integrate X.400-based messaging into your

application.

The Guide also describes how to extend MailmaX.400 with customized functionality.

The main options are described below:

1.1 Simple MAPI-compliant API
MailmaX.400 for Windows supports the MaXware Simple MAPI programming

interface. This is an API compliant with Microsoft Simple MAPI that allows applications

to access inbound and outbound messages in MailmaX.400. This document contains

information about all implemented Simple MAPI calls, and several examples showing

the use of these calls.

For more detailed information on what MAPI and Simple MAPI are, you can read the

Microsoft documents on MAPI and Simple MAPI. These are distributed with Microsoft

Mail, Microsoft Exchange, Microsoft Office Development Kit, and with the Microsoft

Developers Network.

Note that Simple MAPI is an API that functions on a local set of messages and folders.

To make the system connect to the remote messaging system, you need to program in

relation to the Mail Spooler.

1.2 The Mail Spooler
The Mail Spooler is a separate module in MailmaX.400 for Windows that controls all

communication (connects to the server and downloads, lists or uploads mail). The Mail

Spooler can be controlled either by the end user through the MailmaX.400 Mailbox

commands or by DDE calls directly from the application.

1.3 DDE calls to MailmaX.400
It is possible to submit messages and/or start connections by issuing DDE calls to

MailmaX.400 for Windows.

1.4 MailmaX.400 for Windows application
startup

MailmaX.400 for Windows can be configured to show the right icon and start your

application automatically when a message containing your file is opened.

2
Introduction
Mai lmaX.400 for Windows Programmer 's Guide

1.5 Integration of customized Extension
DLL

It possible to include custom functionality in MailmaX.400 by creating an Extension

DLL with subroutines that are called by MailmaX.400 on certain events (like the saving

of a message and communication startup).

3
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2. MaXware Simple MAPI functions

2.1 Introduction
The MaXware S-MAPI interface supports applications written in C/C++.

To avoid conflict between MaXware’s MAPI.DLL module and any other MAPI.DLL

from another vendor, it is recommended that C, C++ programs call the module

MXMAPI32.DLL instead of MAPI.DLL. This module is always installed in the

Mailmax directory, whereas any vendor may replace the MAPI.DLL that is installed in

the Windows System Directory. The two modules are functionally equivalent, but have

different file and module names.

2.2 Return values
All implemented calls return SUCCESS_SUCCESS (0) on success. On error, function-

dependent values are returned. The possible return values are documented with the

procedure calls that can return them.

2.3 Prerequisites
MailmaX.400 should be properly installed, and you should be able to send and receive

mail using it.

For MailmaX.400, the %TEMP% environment variable has to be defined. MaXware

Simple MAPI uses the %TEMP% directory as temporary storage when composing

messages and extracting files.

2.4 How to use the MaXware Simple MAPI
MailmaX.400 for Windows includes two copies of the Simple-MAPI .DLL module, one

named MAPI.DLL and the other named MXMAPI32.DLL. MailmaX.400 installs

MAPI.DLL to the Windows System directory, and MXMAPI.DLL/MXMAPI32.DLL to

the MailmaX.400 directory. The user can choose not to install MAPI.DLL. Many E-mail

and communication programs install their own MAPI.DLL to the Windows System

directory. These programs include Microsoft Mail, Microsoft Windows and other

applications supporting MAPI or Simple MAPI. Therefore you should use the

MXMAPI.DLL/MXMAPI32.DLL in the MailmaX.400 directory to avoid the problems

that arise if other programs overwrite the MaXware MAPI.DLL. If you have definition

files from MaXware, MXMAPI.H defines how to access

MXMAPI.DLL/MXMAPI32.DLL and also defines MaXware extensions to MAPI,

whereas MAPI.H defines how to access Microsoft compliant routines in MAPI.DLL.

4
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.5 MaXware Simple MAPI sessions
All Simple MAPI calls are done in the context of a session, and the following section

explains how a session is obtained.

Before the first MailmaX.400 or MAPI logon there is no existing valid MaXware Simple

MAPI session. As result of a successful logon, the user’s LMS (Local Message Store) is

opened and a valid session is obtained. Any subsequent logon process can do either of

the following with respect to logon credentials (user name and password):

• Not supply logon credentials (try to access the default session). In this case the MAPI

module will return a handle to an existing session if this is possible (MailmaX.400 or

another program based on Simple MAPI is already logged on).

• Supply logon credentials (explicit logon). In this case the messaging subsystem

validates the name and password given, and logs on to a new user’s LMS. This

behavior is not dependent on flag settings - in MaXware Simple MAPI, all sessions

behave like SHARED.

2.6 General C data types
The following definitions are used in all C struct definitions, proc definitions and

examples through this document:

ty p ed e f u n s ig n e d lo n g U L ON G ;

ty p ed e f u n s ig n e d lo n g F A R * L P U L ON G ;

ty p ed e f u n s ig n e d lo n g F L A G S ;

ty p ed e f u n s ig n e d lo n g L H A N D L E

ty p ed e f u n s ig n e d lo n g F A R * L P L H A N D L E ;

ty p ed e f u n s ig n e d lo n g F A R * L P S T R;

ty p ed e f u n s ig n e d v o id F A R * L P V OI D ;

ty p ed e f u n s ig n e d lo n g U L RE S E RV E D ;

5
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.7 MAPIFileDesc
MAPIFFileDesc contains information about a file to be attached to a message.

C and C++

ty p ed e f s t ru ct {

 U L ON G u l Res e rv e d ; / / R es er v ed fo r fu tu re u s e (m u s t b e 0)

 U L ON G f l F la g s ; / / F la g s

 U L ON G n P o s i t io n / / A t ta ch m en t p o s i t io n in t e x t

 L P S T R lp s z P a th N a m e; / / F u l l p a th n a m e o f a t ta ch m en t f i le

 L P S T R lp s z F i l eN a m e; / / O r ig in a l f i l e n a m e (o p t io n a l)

 L P V OI D lp F i l eT yp e; / / A t ta ch m en t f i l e t yp e (o p t i o n a l)

} M a p iF i le D es c , fa r * l p M a p iF i l eD es c ;

Note: MaXware Simple MAPI does not support OLE attachments.

Attributes:

Reserved

Reserved. Must be zero.

Flags

Bit map of flags. Unused flags are reserved and must be zero.

Can be set to MAPI_ATTACH_BINARY (&H8000000) to force binary type for

attachment when submitting or saving messages using MAPISendMail or

MAPISaveMail.

Position

Position of attachment in text note.

Note: In MaXware Simple MAPI, this value is ignored and will always be set to -1 by

the MAPI routines.

PathName

The full path and file name of the attachment file. This name should include disk volume

and directory names.

The file must be closed by your application before it is handed to Simple MAPI.

Fi leName

The file name of the attachment as used by the end user.

With the MaXware Simple MAPI it possible to create messages containing a Message

BodyPart (forwarding). The following MaXware specific syntax must be used for the

value of the FileName:

 %FORWARDEDBP=<MessageID for the message to be forwarded>

The message to be forwarded must exist in the Local Message Store.

To get the Message ID of any forwarded message when reading a message, the

MAPI_RETURN_FORWARD_ID flag must be set in the Flags parameter to

MAPIReadMail.

6
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

If the flag is not set, MaXware Simple MAPI will process all forwarded messages

recursively, and list all found BodyParts as if they were BodyParts to the outermost

message.

Fi leType

Pointer to a MAPIFileTagExt structure describing the file format (type) of the

attachment and the X.400 BodyPart encoding to be used. This structure is described in

the next section.

7
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.8 MAPIFileTagExt
The MAPIFileTagExt structure specifies the format and type of an attached file, i.e. if it

is a MS Word file, an Excel file, etc. It also specifies how to encode the BodyPart (the

attachment) in an X.400 message (Text, FTAM, Bilaterally Defined etc.).

The syntax of the MapiFileTagExt structure is as follows:

ty p ed e f s t ru ct {

 U L ON G u l Res e rv e d ;

 U L ON G cb T a g ;

 L P BY T E lp T a g ;

 U L ON G cb E n co d i n g ;

 L P BY T E lp E n co d i n g ;

} M a p iF i leT a g E x t , F a r * l p M a p iF i leT a g E x t ;

Attributes:

Reserved

Reserved. Must be zero.

cbTag

Size, in bytes, of the value of the Tag Attribute

lpTag

Pointer to an X.400 Object Identifier defining the format and type of the

BodyPart/attachment in its original form, such as MS Word or MS Excel. If the

attachment is encoded as an FTAM BodyPart, the Object Identifier is sent in the FTAM

parameter “Application Reference”. Possible values for the Tag attribute appear in the

OID column of the file DOCMAGIC. in the MailmaX.400 directory.

cbEncoding

Size, in bytes, of the value of the Encoding Attribute

8
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

lpEncoding

Pointer to an Object Identifier defining the X.400 BodyPart encoding of the file. The

Object identifiers are defined in X.420 and are listed in the table below:

MaXware

BodyPart

Type name

X.400

BodyPart Type

The extended BodyPart type

names as defined in the X.420

standard

lpEncoding

ObjectID

Data Bilaterally defined id-et-bilaterally-defined 2.6.1.4.9

File FTAM id-et-file-transfer

Note: This causes the message to be

encoded as P22.

2.6.1.4.12

IA5 IA5 id-et-ia5-text 2.6.1.4.0

Teletex Teletext (T.61) id-et-teletex 2.6.1.4.4

GeneralText

(ISO 8859-x

character

sets)

GeneralText id-et-general-text

Note: This causes the message to be

encoded as P22.

2.6.1.4.11

G3Fax

(incoming

only)

G3Facsimile id-et-g3-facsimile 2.6.1.4.2

IPM Forwarded message id-et-message 2.6.1.4.7

If an unknown ObjectID is specified by the application, S-MAPI will store and handle

the message as type DATA. Incoming messages with unknown or undefined X.400

BodyPart encoding are represented and handled as DATA.

9
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.9 MAPIMessage
MAPIMessage contains information about a message.

C and C++

ty p ed e f s t ru ct {

 U L ON G u l Res e rv e d ;

 L P S T R lp s z S u b j ec t ;

 L P S T R lp s z N o teT e x t ;

 L P S T R lp s z M es s a g eT y p e ;

 L P S T R lp s z D a t eR ec e iv ed ;

 L P S T R lp s z C o n v er s a t i o n I D ;

 F L A G S f l F la g s ;

 lp M a p iR ec ip D es c lp O r ig in a t o r ;

 U L ON G n Re c ip C o u n t ;

 lp M a p iR ec ip D es c lp Re c i p s ;

 U L ON G n F i leC o u n t ;

 lp M a p iF i le D e s c lp F i l es ;

} M a p i M e s s a g e , fa r * M a p iM e s s a g e ;

#d e f in e M A P I _U N RE A D 0 x 0 0 0 0 0 0 0 1

#d e f in e M A P I _RE C E I P T _ RE Q U E S T E D 0 x 0 0 0 0 0 0 0 2

#d e f in e M A P I _S E N T 0 x 0 0 0 0 0 0 0 4

#d e f in e M A P I _M S G _F A I L E D 0 x 0 8 0 0 0 0 0 0

Attributes:

Reserved

Reserved. Must be zero.

Subject

Pointer to the text string describing the message subject, max. 256 characters. A pointer

value of NULL or empty string indicates no subject text.

NoteText

Pointer to a string containing the message text (the text note which is the first BodyPart

in the X.400 message). A pointer value of NULL or empty string indicates no text (either

no BodyParts, or that the first BodyPart is binary).

MessageType

Pointer to a string indicating the message class. The type is for use by applications other

than interpersonal mail.

MaXware Simple MAPI simulates the MAPI Message type concept by putting

“<<message type>>” at the end of the subject when a message is created, and detecting

the message type in the subject when a message is received. This means that the Message

Type concept will work when both the sender and the recipient use MaXware Simple

MAPI, if both parties use Microsoft Simple MAPI, but not when one of the applications

uses Microsoft Simple MAPI and the other uses the MaXware Simple MAPI

implementation.

DateReceived

Pointer to a string indicating the date the message was received. The format is

“YYYY/MM/DD HH:MM” using a 24-hour clock.

10
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Note that the MailmaX.400 folder shows the submission date for messages, and not the

date received.

Note also that the date and time format does not follow the (local) Windows date and

time format.

ConversationID

Ignored in this version of MaXware Simple MAPI.

Flags

Bitmap of message flags. Unused flags are reserved and must be zero for outbound

messages, and should be ignored for inbound messages.

MAPI_UNREAD on an inbound message means that the message has not been read.

MAPI_UNREAD is set on an outbound message when saved, and removed when one

receipt notification is received for each of the recipients of the message (the message

status in the MailmaX.400 OUTTRAY).

MAPI_SENT is set on an outbound message as soon as the message has been submitted

(transferred) to the X.400 message store.

MAPI_MSG_FAILED is a MaXware extension that will be set on an outbound

message if the message has the state “FAILED” in the MailmaX.400 OUTTRAY.

MAPI_RECEIPT_REQUESTED can be set on an outbound message to request receipt

notifications from all recipients.

Originator

Pointer to a MAPIReceip structure describing the originator of the message.

RecipCount

The number of message recipient structures that the lpRecips Attribute points to. The

number of recipient descriptors in the message’s envelope is stored in this location. A

value of 0 indicates that no recipients have been defined.

Recips

Pointer to an array of MAPIReceip structures describing the recipients of the message.

Fi leCount

The number of file attachment descriptors that lpFiles points to. A value of 0 indicates

that no file attachments have been defined.

Fi les

Pointer to an array of MAPIFileDesc structures, each holding information about a file

attachment.

11
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.10 MapiSecureOptions
MapiSecureOptions contains information about secure options

C and C++

ty p ed e f s t ru ct {

 S E C U RE _M E S S A G E _L E V E L M es s a g eS ec u r i t yL ev e l ;

 D I G E S T _A L G O D ig e s tA lg o ;

 C I P H E R_A L G O C ip h erA lg o ;

 BO OL M im eE n co d i n g ;

} M a p iS ec u r eO p t io n s , F A R * l p M a p iS e cu r e Op t io n s ;

ty p ed e f en u m {

 S E C U RE _M E S S A G E _L E V E L _U N K N OW N = - 1

 U N S E C U RE D =0 ,

 S I G N = 1 ,

 E N C RY P T =2 ,

 S I G N _A N D _E N C RY P T =3

 S I G N _ OK = 5 ,

 E N C RY P T _OK =6 ,

 S I G N _A N D _E N C RY P T _ OK = 7

 S I G N _K O= 8 ,

 E N C RY P T _K O =9 ,

 S I G N _A N D _E N C RY P T _K O= 1 0

} S E C U RE _M E S S A G E _ L E V E L ;

ty p ed e f en u m {

 D I G E S T _A L G O _U N K N OW N = - 1 ,

 S H A 1 = 0 ,

 S H A 2 5 6 =1 ,

 S H A 3 8 4 =2 ,

 S H A 5 1 2 =3 } D I G E S T _A L G O;

ty p ed e f en u m {

 C I P H E R _A L G O_U N K N OW N = - 1 ,

 D E S 3 =0 ,

 A E S 1 2 8 =1 ,

 A E S 1 9 2 =2 ,

 A E S 2 5 6 =3 } C I P H E R_A L G O ;

ty p ed e f en u m {

 M I M E _E N C OD I N G _U N K N O W N = - 1 ,

 B I N A RY =0 ,

 E N C OD E D =1 } M I M E _E N C O D I N G ;

Attributes:

MessageSecurityLevel

Security level of the message:

 UNSECURED : the message has no secure options

 SIGN : the message is signed

 ENCRYPT : the message is encrypted

 SIGN_AND_ENCRYPT: the message is signed and encrypted

DigestAlgo

If the message is signed, digest algorithm can be: SHA1, SHA256, SHA384, SHA512

12
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Default value is SHA256

CipherAlgo

If the message is encrypted, cipher algorithm can be : DES3, AES128, AES196, AES256

Default value is AES128

MimeEncoding

Tell if the mime attachment is transfer as binary (0) or encoded (1). The value of -1

indicates that the information is unknown

2.11 MapiSecureMime
MapiSecureMime contains information about the mime body

C and C++

ty p ed e f s t ru ct {

 ch a r Ob j ec t I d [4 8] ;

 L P S T R M im eP a th ;

} M a p iS ec u r eM im e, F A R * lp M a p iS e cu reM im e;

Attributes :

ObjectId

Object identifier associatiated to the MIME bodypart

 1.2.840.113549.1.7.2 signed

 1.2.840.113549.1.7.3 encrypted

 1.2.840.113549.1.7.4 signed and encrypted

MimePath

Path of the file that contains the MIME information

This parameter has to be freed with MAPIFreeBuffer

13
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.12 MAPIReceip
A MAPIRecip structure holds information about a message sender or recipient.

C and C++

ty p ed e f s t ru ct {

 U L ON G u l Res e rv e d

 U L ON G u l Re c i p C la s s

 P S T R lp s z N a m e

 L P S T R lp s z A d d r es s

 U L ON G u lE I D S i z e

 L P V OI D lp E n tr y I D

} M a p i Re c ip D es c , fa r lp M a p i Re c i p D e s c ;

#d e f in e M A P I _O RI G 0 / / R ec ip ie n t i s m e s s a g e o r ig i n a t o r

#d e f in e M A P I _T O 1 / / R ec ip ie n t i s a p r im a ry r ec i p i en t

#d e f in e M A P I _C C 2 / / R ec ip ie n t i s a c o p y re c i p i e n t

#d e f in e M A P I _BC C 3 / / R ec ip ie n t i s b l in d c o p y re c ip ie n t

Attributes:

Reserved

Reserved. Must be zero.

RecipClass

Numeric value specifying the type of recipient (0:Originator, 1:To, 2:CC, 3:BCC). Also

used to describe the originator of a received message.

Name

The display (“friendly”) name of the recipient. This may be the FreeForm name in the

X.400 address for an inbound message. When creating a recipient, you can fill in the

recipient’s name in this field. If the address field is empty, the MaXware MAPI will look

for a legal address (see below) in the Name field..

Address

The address of a recipient. The address must be in one of the following formats:

MailmaX.400 short name (for list or person in the Address Book)

• X.400 O/R-name in the form: g=John;s=Jones... as defined in F.400 (1992)

and Chapter 10 in this manual.

• “X.400:g=John;s=Jones...”

• The O/R name may be prefixed by the string “X.400:”; this string is ignored.

• Internet format in the form: xxxx@yyyy.zzz

• <Template name>:parameter 1/parameter 2...

where the template name is the name of an address template defined in the

MailmaX.400 file <Profile>.FRM (fax, telex, pager, Internet, etc.)

• A comma-delimited list of the above.

14
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

EIDSize

The size in bytes of the entry identifier value of the lpEntryID Attribute.

EntryID

Binary data used by the messaging system to specify and handle the recipient efficiently.

Unlike the lpszAddress Attribute, this data is opaque and may not be printable. The

messaging system returns valid lpEntryIDs for recipients and originators that are defined

in the Address Book.

15
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.13 MAPILogon
MAPILogon starts and initializes a Simple-MAPI session.

C and C++

U L ON G M A P I L o g o n (

 U L ON G U I P a ra m ,

 L P S T R P ro f i le N a m e,

 L P S T R P a s s w o rd ,

 ULO NG F la g s ,

 ULO NG Res e rv e d ,

 LPLHA ND LE S es s io n)

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

#d e f in e M A P I _N E W _S E S S I ON 0 x 0 0 0 0 0 0 0 2

#d e f in e M A P I _A L L OW _OT H E R S 0 x 0 0 0 0 0 0 0 8

#d e f in e M A P I _E X P L I C I T _P R O F I L E 0 x 0 0 0 0 0 0 1 0

#d e f in e M A P I _U S E _ D E F A U L T 0 x 0 0 0 0 0 0 4 0

/ / M a X w a re e x t en s i o n :

#d e f in e M A P I _M A I L M A X 0 x 1 0 0 0 0 0 0 0

#d e f in e M A P I _D E L E T E _T O_W A S T E BA S K E T 0 x 0 8 0 0 0 0 0 0

UIParam

If MAPI_LOGON_UI is set in the flFlags word, this parameter must contain the handle

for the parent window of type HWND.

Profi leName

User’s logon name. If given, logon applies to the LMS of this user. If NULL, the

behavior is controlled by flFlags. See below.

Password

The user’s password. This value is required for successful logon if the

MAPI_LOGON_UI is not set.

Flags

If MAPI_LOGON_UI is set, the dialog box UI is presented when necessary.

MAPI_ALLOW_OTHERS makes it possible for other applications to perform implicit

logon (a MAPILogon call where lpszProfileName and lpszPassword are NULL) and get

a valid session handle to this session.

If MAPI_NEW_SESSION is set, a new session will always be opened.

If MAPI_EXPLICIT_PROFILE is not set, the messaging subsystem supplies logon

credentials by itself.

To enable MaXware extensions to Simple MAPI, the flag MAPI_MAILMAX must be

set. The extensions enabled by this flag are documented with the calls and structs they

extend.

Reserved

Should always be 0.

16
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Session

A handle to a MAPI Session structure. MAPILogon initializes this handle and the

corresponding structure, and the handle must be given as input to all subsequent Simple

MAPI calls.

Return values

MAPI_E_FAILURE If ulReserved was not 0.

MAPI_E_LOGIN_FAILURE: If the session handle was not valid, or if ProfileName

is empty and the combination of flags in the Flags

parameter is not correct or if some other error occurs

during the logon process.

MAPI_E_INSUFFICIENT_MEMORY

 if an error occurs while opening LMS.

MAPI_USER_ABORT if the user presses Cancel in the logon dialog.

17
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.14 MAPILogoff
MAPILogoff terminates a Simple-MAPI session.

C and C++

U L ON G M A P I L o g o f f (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m s ,

 F L A G S F la g s ,

 U L ON G Res e rv e d)

#d e f in e M A P I _L OG OF F _S H A R E D 0 x 0 0 0 0 0 0 0 1

#d e f in e M A P I _L OG OF F _U I 0 x 0 0 0 0 0 0 0 2

Session

A handle for the current session, obtained by calling MAPILogon.

UIParam

Handle of parent window. This parameter is not used because no dialog box is displayed

during logoff.

Flags

MAPI_LOGOFF_UI is not used by the MaXware Simple MAPI module.

To terminate the session completely, MAPI_LOGOFF_SHARED must be set.

Reserved

Should always be 0.

Return values

MAPI_E_FAILURE if Reserved != 0.

or Session == NULL or error while logging out. False, return.

MAPI_E_INVALID_SESSION if Session == 0.

NOTE: The routine may fail (general protection fault) if the Session parameter is larger

than 0 and does not point to a valid session.

SUCCESS_SUCCESS if the logoff operation was successful.

18
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.15 MAPISendDocuments
MAPISendDocuments is used to compose a message with one or more files attached

and a cover note. The MailmaX.400 Compose window is displayed to let the user add

recipients and other information to the message.

Note that this call has no complex parameters - it is particularly useful when working

with macro languages and other languages without complex data types.

C and C++

U L ON G M A P I S en d D o cu m e n t s (

 U L ON G U I P a ra m ,

 L P S T R D e l im C h a r ,

 L P S T R F i l eP a t h s ,

 L P S T R F i l eN a m e s ,

 U L ON G Res e rv e d)

UIParam

Parent window handle; 0 is always valid.

DelimChar

Delimiter character used between file names in the FilePaths and FileNames strings. The

strings should be terminated by \0.

Fi lePaths

A set of path strings for the files to be attached (including file names).

Fi leNames

Names of the files to be attached (no paths, used for display only).

Use 8.3 format (filename.txt).

Reserved

Always 0.

19
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.16 MAPISendMail
MAPISendMail is used to send mail using MailmaX.400. Note that the message sent is

not transferred to the mail server; it is just saved in the OUTTRAY folder with the status

“Ready”. Place all information about the message to be sent in the Message parameter

(MAPIMessage structure/type).

To get the MailmaX.400 Mail Spooler to connect and send documents that are in the

OUTTRAY, the application must issue DDE commands to the spooler.

C and C++

U L ON G M A P I S en d M a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 lp M a p iM e s s a g e M es s a g e ,

 F L A G S F l a g s ,

 U L ON G Res e rv e d)

#d e f in e M A P I _D I A L OG 0 x 0 0 0 0 0 0 0 8

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

Session

Session struct, obtained by MAPILogon. If this is set to 0, implicit logon will be

performed. This will only succeed if a valid session with MAPI_ALLOW_SHARED

exists, or the MAPI_LOGON_UI is set.

UIParam

ULONG, Handle to the parent window.

Message

Pointer to message struct containing the message to be sent.

Recipient()

An array of recipients. When RecipCount is 0, this parameter is ignored. The recipient

string can include either the recipient’s name or the recipient’s name-address pair. If just

a name is specified, the name is resolved to an address using implementation-defined

address book search rules. If an address is also specified, no search for the name is

performed. The address is in an implementation-defined format, and is assumed to have

been obtained from the implementation in some other way. When the address is

specified, the name is used for display to the user and the address is used for delivery.

When EntryID is used, no search is performed and the display-name and address are

ignored. (A name and address are associated with the EntryID within Mail.) EntryIDs are

returned by the MAPIReadMail function.

Fi le()

An array of attachment files written when the message is read. The number of

attachments per message may be limited in some systems. If the limit is exceeded, the

error MAPI_E_TOO_MANY_FILES is returned. When FileCount is 0, this parameter is

ignored.

Attachment files are read and attached to the message before the call returns. Do not

attempt to display attachments outside the range of the message body.

20
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Flags

MAPI_DIALOG causes MAPI to display a Compose window with information on the

message, and lets the user edit and add recipients, attachments, etc..

MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

Reserved

Should always be 0.

Return values

MAPI_E_FAILURE if ulReserved != 0, and in all error situations except those listed

below.

MAPI_E_INVALID_SESSION if hSession < 0L (this call allows hSession == 0, i.e.

implicit logon is allowed)

MAPI_E_UNKNOWN_RECIPIENT if no dialog was allowed, and a RecipDesc

contained a name that was not found in the address book, or an address with a syntax

error.

MAPI_E_LOGIN_FAILURE if the session handle was not valid, or if ProfileName is

empty and the combination of flags in the Flags parameter is not correct or if some other

error occurs during the logon process.

21
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.17 MAPISendSecureMail
MAPISendSecureMail is used to send mail using MailmaX.400. Note that the message

sent is not transferred to the mail server; it is just saved in the OUTTRAY folder with the

status “Ready”. Place all information about the message to be sent in the Message

parameter (MAPIMessage structure/type).

To get the MailmaX.400 Mail Spooler to connect and send documents that are in the

OUTTRAY, the application must issue DDE commands to the spooler.

C and C++

U L ON G M A P I S en d S ec u r eM a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 lp M a p iM e s s a g e M es s a g e ,

 lp M a p iS e cu re Op t i o n s Op t i o n s

 F L A G S F la g s ,

 U L ON G Res e rv e d)

#d e f in e M A P I _D I A L OG 0 x 0 0 0 0 0 0 0 8

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

Session

Session struct, obtained by MAPILogon. If this is set to 0, implicit logon will be

performed. This will only succeed if a valid session with MAPI_ALLOW_SHARED

exists, or the MAPI_LOGON_UI is set.

UIParam

ULONG, Handle to the parent window.

Message

Pointer to message struct containing the message to be sent.

Options

Pointer to MAPISecureOptions struct containing secure options.

Recipient()

An array of recipients. When RecipCount is 0, this parameter is ignored. The recipient

string can include either the recipient’s name or the recipient’s name-address pair. If just

a name is specified, the name is resolved to an address using implementation-defined

address book search rules. If an address is also specified, no search for the name is

performed. The address is in an implementation-defined format, and is assumed to have

been obtained from the implementation in some other way. When the address is

specified, the name is used for display to the user and the address is used for delivery.

When EntryID is used, no search is performed and the display-name and address are

ignored. (A name and address are associated with the EntryID within Mail.) EntryIDs

are returned by the MAPIReadMail function.

22
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Fi le()

An array of attachment files written when the message is read. The number of

attachments per message may be limited in some systems. If the limit is exceeded, the

error MAPI_E_TOO_MANY_FILES is returned. When FileCount is 0, this parameter is

ignored.

Attachment files are read and attached to the message before the call returns. Do not

attempt to display attachments outside the range of the message body.

Flags

MAPI_DIALOG causes MAPI to display a Compose window with information on the

message, and lets the user edit and add recipients, attachments, etc..

MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

Reserved

Should always be 0.

Return values

MAPI_E_FAILURE if ulReserved != 0, and in all error situations except those listed

below.

MAPI_E_INVALID_SESSION if hSession < 0L (this call allows hSession == 0, i.e.

implicit logon is allowed)

MAPI_E_UNKNOWN_RECIPIENT if no dialog was allowed, and a RecipDesc

contained a name that was not found in the address book, or an address with a syntax

error.

MAPI_E_LOGIN_FAILURE if the session handle was not valid, or if ProfileName is

empty and the combination of flags in the Flags parameter is not correct or if some other

error occurs during the logon process.

23
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.18 MAPISaveMail
MAPISaveMail is used to save a new message or to replace an existing message. The

message is saved in the OUTTRAY folder with the status “Draft”.

Note that the Microsoft Simple MAPI module saves draft messages in the INTRAY,

where they may be found later by using the MAPIFindNext call. This is not possible

with MaXware Simple MAPI, but a saved message may later be fetched using the

message identifier returned by MAPISaveMail as a parameter to MAPIReadMail.

C and C++

U L ON G M A P I S a v e M a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 lp M a p iM e s s a g e M es s a g e ,

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L P S T R M es s a g e I D)

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

Session

Session struct, obtained by MAPILogon. If this is set to 0, implicit logon will be

performed. This will only succeed if a valid session with MAPI_ALLOW_SHARED

exists, or the MAPI_LOGON_UI is set.

UIParam

Handle of the parent window.

Message

Pointer to message struct containing the message to be saved.

Recipient()

An array of recipients. When RecipCount is 0, this parameter is ignored. The recipient

string can include either the recipient’s name or the recipient’s name-address pair. If just

a name is specified, the name is resolved to an address using implementation-defined

address book search rules. If an address is also specified, no search for the name is

performed. The address is in an implementation-defined format, and is assumed to have

been obtained from the implementation in some other way. When the address is

specified, the name is used for display to the user, and the address is used for delivery.

When EntryID is used, no search is performed, and the display-name and address are

ignored. (A name and address are associated with the EntryID within Mail.) EntryIDs are

returned by the MAPIReadMail function.

Fi le()

An array of attachment files written when the message is read. The number of

attachments per message may be limited in some systems. If the limit is exceeded, the

error MAPI_E_TOO_MANY_FILES is returned. When FileCount is 0, this parameter is

ignored.

Attachment files are read and attached to the message before the call returns. Do not

attempt to display attachments outside the range of the message body.

24
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Flags

Controls this function’s behavior.

MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

Reserved

Should always be 0.

MessageID

If not an empty string, this parameter gives the ID of an existing message that is

overwritten. If empty, the message is saved as a new message, and a new MessageID is

returned in this parameter.

Return values

MAPI_E_FAILURE if ulReserved != 0, and in all other cases except those listed below.

MAPI_E_INVALID_SESSION if hSession < 0L

(this call allows hSession == 0, i.e. implicit logon allowed)

25
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.19 MAPISaveSecureMail
MAPISaveSecureMail is used to save a new message or to replace an existing message.

The message is saved in the OUTTRAY folder with the status “Draft”.

Note that the Microsoft Simple MAPI module saves draft messages in the INTRAY,

where they may be found later by using the MAPIFindNext call. This is not possible

with MaXware Simple MAPI, but a saved message may later be fetched using the

message identifier returned by MAPISaveSecureMail as a parameter to

MAPIReadMail.

C and C++

U L ON G M A P I S a v e M a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 lp M a p iM e s s a g e M es s a g e ,

 lp M a p iS e cu re Op t i o n s Op t i o n s

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L P S T R M es s a g e I D)

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

Session

Session struct, obtained by MAPILogon. If this is set to 0, implicit logon will be

performed. This will only succeed if a valid session with MAPI_ALLOW_SHARED

exists, or the MAPI_LOGON_UI is set.

UIParam

Handle of the parent window.

Message

Pointer to message struct containing the message to be saved.

Options

Pointer to MAPISecureOptions struct containing secure options.

Recipient()

An array of recipients. When RecipCount is 0, this parameter is ignored. The recipient

string can include either the recipient’s name or the recipient’s name-address pair. If just

a name is specified, the name is resolved to an address using implementation-defined

address book search rules. If an address is also specified, no search for the name is

performed. The address is in an implementation-defined format, and is assumed to have

been obtained from the implementation in some other way. When the address is

specified, the name is used for display to the user, and the address is used for delivery.

When EntryID is used, no search is performed, and the display-name and address are

ignored. (A name and address are associated with the EntryID within Mail.) EntryIDs

are returned by the MAPIReadMail function.

26
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Fi le()

An array of attachment files written when the message is read. The number of

attachments per message may be limited in some systems. If the limit is exceeded, the

error MAPI_E_TOO_MANY_FILES is returned. When FileCount is 0, this parameter is

ignored.

Attachment files are read and attached to the message before the call returns. Do not

attempt to display attachments outside the range of the message body.

Flags

Controls this function’s behavior.

MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

Reserved

Should always be 0.

MessageID

If not an empty string, this parameter gives the ID of an existing message that is

overwritten. If empty, the message is saved as a new message, and a new MessageID is

returned in this parameter.

Return values

MAPI_E_FAILURE if ulReserved != 0, and in all other cases except those listed below.

MAPI_E_INVALID_SESSION if hSession < 0L

(this call allows hSession == 0, i.e. implicit logon allowed)

27
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.20 MAPIFindNext
To read mail from the MailmaX.400 INTRAY Folder with the MaXware Simple MAPI,

you need to obtain the MessageID of the message that you want to read. To do this, you

must use the MAPIFindNext call. After you have read the message and processed the

information returned, you should free the space allocated by the messaging subsystem.

MAPIFindNext obtains a valid MessageID. The ID can later be given as parameter to

other Simple MAPI calls for reading or deleting messages, or as a seed parameter to a

new MAPIFindNext call.

You can choose messages from the pool of ALL messages in the INTRAY Folder, or

just messages with status “Unread”. The flag setting determines the folder to be searched

for messages.

Note: With MaXware Simple MAPI it is also possible to read messages from the

MailmaX OUTTRAY Folder. To do this, set the flag MAPI_SEARCH_OUTTRAY.

Messages may also be filtered on the Message Type.

C and C++

U L ON G M A P I F in d N e x t (

 L H A N D L E S es s io n ,

 I L ON G U I P a ra m ,

 L P S T R M es s a g eT y p e ,

 L P S T R S eed M e s s a g e I D ,

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L P S T R M es s a g e I D)

#d e f in e M A P I _U N RE A D _ ON L Y 0 x 0 0 0 0 0 0 2 0

#d e f in e M A P I _G U A RA N T E E _F I F O 0 x 0 0 0 0 0 1 0 0

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

/ / M a X w a re e x t en s i o n :

#d e f in e M A P I _S E A RC H _OU T T RA Y 0 x 0 0 0 0 0 2 0 0

Session

Session handle, obtained by MAPILogon. No implicit logon.

UIParam

Handle of parent window

MessageType

MAPI Message type. If this is NULL or “”, all messages will be found. If this string is

not “”, only messages mailed with this string in the MessageType field in the Message

struct will be found. (See additional comments on the MaXware implementation of

MessageTypes under the description of the Message struct).

SeedMessageID

If not an empty string, this parameter is the seed MessageID, i.e. the ID of the last

fetched message. The ID of the returned message will be lower than this number. (In

MaXware, this means that the message is newer than the “seed” message). If an empty

string is given, the ID of the first (oldest) message that satisfies the given flag setting and

message type is returned.

28
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Flags

MAPI_UNREAD_ONLY forces the call to search among UNREAD messages only.

Note:

There is no direct way to specify read messages only. One way to implement this could

be to use FindNext for all messages (without using MAPI_UNREAD_ONLY), read

each message with MAPI_PEEK and MAPI_ENVELOPE_ONLY (see under

MAPIReadMail for these flags), and test the message structure’s Flags value against

MAPI_UNREAD. If the message is unread, use the returned MessageID as seed for a

new call to MAPIFindNext, until you get a read message or the whole folder is traversed.

MAPI_GUARANTEE_FIFO ensures that the message pool is traversed in the FIFO

order. As MailmaX.400 always uses FIFO, this flag is not necessary (and ignored) for

MaXware Simple MAPI.

MaXware Simple MAPI extension:

If the MAPI_SEARCH_OUTTRAY flag is set, MAPIFindNext will search the

messages in the OUTTRAY Folder.

Reserved

Should always be 0.

MessageID

Returned message ID. Should be used in subsequent calls to MAPIFindNext /

MAPIDeleteMail / MAPIReadMail, etc.

Message IDs may be invalidated at any time if another application deletes or moves a

message.

Return values:

MAPI_E_FAILURE if Reserved != 0, and in all other error conditions not listed below.

MAPI_E_INVALID_SESSION if Session = 0.

MAPI_E_NO_MESSAGES if there are no more messages in the folder that match flag

settings given in the Flags.

29
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.21 MAPIReadMail
To read mail from the MailmaX.400 INTRAY Folder with MaXware Simple MAPI, you

need to obtain the MessageID of the message that you want to read. To do this, you must

use the MAPIFindNext call. After you have read the message and processed the

information returned, you should free the space allocated by the messaging subsystem (C

/ C++).

MAPIReadMail fetches the message with the given MessageID and returns the message

as a MAPIMessage structure/type. A valid MessageID is obtained by the

MAPIFindNext call.

Note that some flags in the returned Message struct’s flag word have special meanings

when MAPILogon is performed with the flag MAPI_MAILMAX set and the message is

read from the MailmaX.400 OUTTRAY Folder.

C and C++

U L ON G M A P I Re a d M a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 L P S T R M es s a g e I D ,

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L p M a p i M e s s a g e F A R * M es s a g e)

#d e f in e M A P I _E N V E L OP E _ ON L Y 0 x 0 0 0 0 0 0 4 0

#d e f in e M A P I _P E E K 0 x 0 0 0 0 0 0 8 0

#d e f in e M A P I _B OD Y _A S _F I L E 0 x 0 0 0 0 0 2 0 0

#d e f in e M A P I _S U P P RE S S _A T T A C H 0 x 0 0 0 0 0 8 0 0

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

/ / M a X w a re e x t en s i o n :

#d e f in e M A P I _RE T U RN _F OR W A RD _I D 0 x 2 0 0 0 0 0 0

This function reads a mail message. You should use MAPILogon to establish a valid

MAPI session, and then use MAPIFindNext before calling MAPIReadMail to verify

that the message to be read is the one desired.

The call returns one message, breaking the message content into the same parameters and

types used in the MAPISendMail function. MAPIReadMail fills a block of memory

with the MapiMessage type containing message elements. File attachments are saved to

temporary files, and the names are returned to the caller in the message type. Recipients,

attachments, and contents are copied from the message before the function returns to the

caller, so that later changes to the files do not affect the contents of the message.

There is a flag for specifying that only envelope information is to be returned from the

call. Another flag (in the MapiMessage type) specifies whether the message is marked as

sent or unsent.

All strings are null-terminated, and must be specified in the current character set or code

page of the calling program’s operating system process. In Microsoft Windows, the

character set is ANSI.

30
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Parameters:

Session

An opaque session handle whose value represents a session with the messaging

subsystem. The session handle is returned by MAPILogon and invalidated by

MAPILogoff.

UIParam

The parent window handle for the dialog box. A value of 0 specifies that any dialog box

displayed is application modal.

MsgID

Mail’s string identifier for this message returned by MAPIFindNext or MAPISaveMail.

Flags

A bitmask of flags. Unspecified flags should always be passed as 0. Undocumented flags

are reserved. The following flags are defined.

When you set MAPI_ENVELOPE_ONLY (&H40), the function doesn’t copy

attachments to temporary files or return the note text. All other message information

(except for temporary filenames) is returned. Setting this flag usually reduces the

processing time required for the function.

When you set MAPI_SUPPRESS_ATTACH (&H800), MAPIReadMail doesn’t copy

attachments but returns note text. If MAPI_ONLY_ENVELOPE is set, this flag is

ignored. The flag should reduce the time required by the MAPIReadMail function.

When you set MAPI_BODY_AS_FILE (&H200), the message body is written to a

temporary file and added to the attachment list as the first attachment, instead of

returning a pointer to the message body (the default behavior). The Position parameter of

a body attachment is -1.

When you set MAPI_PEEK (&H80), MAPIReadMail does not mark the message as

read. Any unsuccessful return leaves the message unread.

Reserved

Reserved for future use. This parameter must be 0.

Message

A type set by MAPIReadMail to a message containing the message contents.

Originator

The originator of the message.

Recipients()

An array of recipients. This array will be redimensioned as necessary to accommodate

the number of recipients chosen by the user.

31
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Fi les()

An array of attachment files written when the message is read. When MAPIReadMail is

called, all message attachments are written to temporary files. It is the caller’s

responsibility to delete these files when they are no longer needed. When

MAPI_ENVELOPE_ONLY or MAPI_SUPPRESS_ATTACH is set, no temporary files

are written and no temporary names are filled into the file attachment descriptors. This

array will be redimensioned as necessary to accommodate the number of files attached

by the user.

Return values:

MAPI_E_FAILURE if Reserved != 0, and in all other error conditions not listed below.

MAPI_E_INVALID_SESSION if Session = 0.

MAPI_E_INVALID_MESSAGE if the message is encrypted and can’t be decrypted

32
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.22 MAPIReadSecureMail
To read mail from the MailmaX.400 INTRAY Folder with MaXware Simple MAPI, you

need to obtain the MessageID of the message that you want to read. To do this, you must

use the MAPIFindNext call. After you have read the message and processed the

information returned, you should free the space allocated by the messaging subsystem (C

/ C++).

MAPIReadSecureMail fetches the message with the given MessageID and returns the

message as a MAPIMessage structure/type. A valid MessageID is obtained by the

MAPIFindNext call. It returns also Secure information that are not return by

MAPIReadMail

Note that some flags in the returned Message struct’s flag word have special meanings

when MAPILogon is performed with the flag MAPI_MAILMAX set and the message is

read from the MailmaX.400 OUTTRAY Folder.

C and C++

U L ON G M A P I Re a d M a i l (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 L P S T R M es s a g e I D ,

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L p M a p i M e s s a g e F A R * M es s a g e ,

 lp M a p iS e cu re Op t i o n s p Op t i o n ,

 lp M a p iS e cu reM im e p M im e)

#d e f in e M A P I _E N V E L OP E _ ON L Y 0 x 0 0 0 0 0 0 4 0

#d e f in e M A P I _P E E K 0 x 0 0 0 0 0 0 8 0

#d e f in e M A P I _B OD Y _A S _F I L E 0 x 0 0 0 0 0 2 0 0

#d e f in e M A P I _S U P P RE S S _A T T A C H 0 x 0 0 0 0 0 8 0 0

#d e f in e M A P I _L OG O N _U I 0 x 0 0 0 0 0 0 0 1

/ / M a X w a re e x t en s i o n :

#d e f in e M A P I _RE T U RN _F OR W A RD _I D 0 x 2 0 0 0 0 0 0

This function reads a mail message. You should use MAPILogon to establish a valid

MAPI session, and then use MAPIFindNext before calling MAPIReadMail to verify

that the message to be read is the one desired.

The call returns one message, breaking the message content into the same parameters and

types used in the MAPISendSecureMail function. MAPIReadSecureMail fills a block

of memory with the MapiMessage type containing message elements. File attachments

are saved to temporary files, and the names are returned to the caller in the message type.

Recipients, attachments, and contents are copied from the message before the function

returns to the caller, so that later changes to the files do not affect the contents of the

message.

There is a flag for specifying that only envelope information is to be returned from the

call. Another flag (in the MapiMessage type) specifies whether the message is marked as

sent or unsent.

All strings are null-terminated, and must be specified in the current character set or code

page of the calling program’s operating system process. In Microsoft Windows, the

character set is ANSI.

33
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Parameters:

Session

An opaque session handle whose value represents a session with the messaging

subsystem. The session handle is returned by MAPILogon and invalidated by

MAPILogoff.

UIParam

The parent window handle for the dialog box. A value of 0 specifies that any dialog box

displayed is application modal.

MsgID

Mail’s string identifier for this message returned by MAPIFindNext or MAPISaveMail.

Flags

A bitmask of flags. Unspecified flags should always be passed as 0. Undocumented

flags are reserved. The following flags are defined.

When you set MAPI_ENVELOPE_ONLY (&H40), the function doesn’t copy

attachments to temporary files or return the note text. All other message information

(except for temporary filenames) is returned. Setting this flag usually reduces the

processing time required for the function.

When you set MAPI_SUPPRESS_ATTACH (&H800), MAPIReadMail doesn’t copy

attachments but returns note text. If MAPI_ONLY_ENVELOPE is set, this flag is

ignored. The flag should reduce the time required by the MAPIReadMail function.

When you set MAPI_BODY_AS_FILE (&H200), the message body is written to a

temporary file and added to the attachment list as the first attachment, instead of

returning a pointer to the message body (the default behavior). The Position parameter

of a body attachment is -1.

When you set MAPI_PEEK (&H80), MAPIReadMail does not mark the message as

read. Any unsuccessful return leaves the message unread.

Reserved

Reserved for future use. This parameter must be 0.

Message

A type set by MAPIReadMail to a message containing the message contents.

Originator

The originator of the message.

Recipients()

An array of recipients. This array will be redimensioned as necessary to accommodate

the number of recipients chosen by the user.

34
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Fi les()

An array of attachment files written when the message is read. When MAPIReadMail is

called, all message attachments are written to temporary files. It is the caller’s

responsibility to delete these files when they are no longer needed. When

MAPI_ENVELOPE_ONLY or MAPI_SUPPRESS_ATTACH is set, no temporary files

are written and no temporary names are filled into the file attachment descriptors. This

array will be redimensioned as necessary to accommodate the number of files attached

by the user.

pOption

A type set by MAPIReadMail to a message containing the secure option of the message.

pMime

A type set by MAPIReadMail to a message containing mime information of the

message.

Return values:

MAPI_E_FAILURE if Reserved != 0, and in all other error conditions not listed below.

MAPI_E_INVALID_SESSION if Session = 0.

MAPI_E_INVALID_MESSAGE if the message is encrypted and can’t be decrypted

35
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.23 MAPIFreeBuffer
Frees memory allocated by the MAPIReadMail, MAPIAddress or

MAPIResolveName calls.

C and C++

U L ON G M A P I F re eB u f f er (lp M a p i M e s s a g e p M es s a g e)

pMessage

A pointer to a message record to be freed. All recipient records, file attachment records,

the originator record and all dynamically allocated space are freed. On success,

pMessage is set to NULL.

36
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.24 MAPIDeleteMail
MAPIDeleteMail deletes the message with the given MessageID. To obtain a valid

message ID, you can use the MAPIFindNext call.

C and C++

U L ON G M A P I D e le te M a i l (

 L P H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 L P S T R M es s a g e I D ,

 F L A G S F la g s ,

 U L ON G Res e rv e d)

/ / M a X w a re e x t en s i o n :

#d e f in e M A P I _D E L E T E _T O_W A S T E BA S K E T 0 x 0 8 0 0 0 0 0 0

Session

Session struct, obtained by MAPILogon.

UIParam

Parent window handle.

MessageID

ID of the message to be deleted.

Flags

If the MaXware extension flag MAPI_DELETE_TO_WASTEBASKET is set, the

message is not totally deleted. It is only moved to the WASTEBASKET folder (as with

all message deletion in MailmaX.400 for Windows). To avoid filling up the

WASTEBASKET with old messages, the default action of MAPIDeleteMail is to delete

the message completely.

Reserved

Should always be 0.

Return values:

Returns MAPI_E_FAILURE if ulReserved != 0 and for all other error conditions

except those listed below.

Returns MAPI_E_INVALID_SESSION if hSession <= 0L.

Returns MAPI_E_INVALID_MESSAGE if an error occurs during the deletion of a

message (probably because the MessageID given is invalid).

37
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.25 MAPIAddress
MAPIAddress is to create or modify the set of recipients defined for a message. If a user

interface is displayed, this is the same as for the Address Book functions of

MailmaX.400.

C and C++

U L ON G M A P I A d d r es s (

 L H A N D L E S es s io n ,

 U L ON G U I P a ra m ,

 L P S T R C a p t io n ,

 U L ON G n E d i tF ie ld s ,

 L P S T R L a b e l s ,

 U L ON G n Re c ip s ,

 lp M a p iR ec ip D es c Re c i p s

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 L P U L ON G n N ew Re c i p s

 lp M a p iR ec ip D es c F A R *N ew R ec ip s)

#d e f in e M A P I _A B _N OM O D I F Y 0 x 0 0 0 0 0 4 0 0

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParameter

Parent windows handle.

Caption

Caption for the address book dialog.

38
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

nEditFields

The number of fields with recipient lists -

1: To (primary recipient) field only

2: To and CC (Carbon Copy) fields

3: To, CC and BCC (Blind Carbon Copy) fields.

Label

Label used on the ‘To’ field if nEditFields is 1 and Label is not empty.

nRecips

The number of recipients in Recips.

Recips

An array of recipients.

fFlags

MAPI_LOGON_UI: Show dialog if necessary to let the user log on.

MAPI_AB_NOMODIFY: The MaXware Simple MAPI does not support this flag - the

address book(s) are always read-only.

Reserved

Should always be 0.

nNewRecips

The number of recipients added by this call to MAPIAddress.

NewRecips

An array of recipient records:

in: currently defined recipients

out: result after the user has added / deleted some recipients.

39
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.26 MAPIResolveName
MAPIResolveName converts a user-friendly name (short name in the Address Book) to

a complete X.400 mail address, optionally by prompting the end user for information.

C and C++

U L ON G M A P I Re s o lv eN a m e(

 L H A N D L E lh S e s s io n ,

 U L ON G U I P a ra m e te r ,

 L P S T R N a m e,

 F L A G S F la g s ,

 U L ON G Res e rv e d ,

 lp M a p iR ec ip D es c F A R * Re c i p)

#d e f in e M A P I _A B _N OM O D I F Y 0 x 0 0 0 0 0 4 0 0

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParameter

Parent window handle.

Name

Name to be resolved.

Flags

MAPI_LOGON_UI: Show dialog if necessary to let the user log on.

MAPI_DIALOG: Let the user manually resolve names by displaying a list of recipients.

MAPI_AB_NOMODIFY: Not supported by the MaXware Simple MAPI (the address

book is always read-only).

Reserved

Always 0.

Recip

List of currently defined recipients (in and out parameter).

40
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.27 MAPIDetails
MAPIDetails presents a dialog with the details of an Address Book entry.

C and C++

U L ON G M A P I D e ta i l s (

 U L ON G S es s io n ,

 U L ON G U I P a ra m ,

 lp M a p iR ec ip D es c Re c i p ,

 F L A G S F la g s ,

 U L ON G Res e rv e d)

#d e f in e M A P I _A B _N OM O D I F Y 0 x 0 0 0 0 0 4 0 0

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParam

Parent window handle.

Recip

Recipient record with the information to be presented to the user.

Flags

MAPI_AB_NOMODIFY: Not supported by the MaXware Simple MAPI; the address

book(s) are always read-only.

Reserved

Should always be 0.

41
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.28 MAPIMoveMail
MAPIMoveMail move a message from a folder to another folder.

C and C++

U L ON G M A P I M o v eM a i l (

 U L ON G S es s io n ,

 U L ON G U I P a ra m ,

 L P S T R M es s a g e I D ,

 L P S T R lp s z T a rg e t ,

 F L A G S F la g s ,

 U L ON G Res e rv e d)

#d e f in e M A P I _ L OG ON _U I 0 x 0 0 0 0 0 0 0 1

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParam

Parent window handle.

MessageID

Give the ID of the message to move.

lpszTarget

Give the ID of the destination folder.

Flags

 MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

If the MAPI_SEARCH_OUTTRAY flag is set, MAPIMoveMail will search the

message in the OUTTRAY folder.

Reserved

Should always be 0.

Return values:

Returns MAPI_E_FAILURE if ulReserved != 0 and for all other error conditions

except those listed below.

Returns MAPI_E_INVALID_SESSION if hSession <= 0L (this call allows

hSession==0, i.e. implicit logon is allowed)

Returns MAPI_E_INVALID_MESSAGE if an error occurs during the move of a

message (probably because the MessageID given is invalid).

Returns MAPI_E_INVALID_ FOLDER if an error occurs during the move of the

message (probably because the lpszTarget given is invalid).

42
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.29 MAPIExportArchive
MAPIExportArchive copies all message in the “Archive” system folder to a specific directory

with standard LMS format. Optional this LMS structure will be compressed in a ZIP file.

C and C++

U L ON G M A P I E x p o rtA rc h i v e (
 U L ON G S es s io n ,
 U L ON G U I P a ra m ,
 L P S T R lp s z T a rg e t ,
 L P S T R lp s z A rch i v eN a m e,
 U L ON G D e l e te M es s a g e s ,
 BO OL b D e cr yp tA t ta ch m e n t s
 U L ON G U s eC o m p re s s io n ,

 I N T 4 *N u m b erE x p o r ted ,
 F L A G S F la g s ,
 U L ON G Res e rv e d)

#d e f in e M A P I _ L OG ON _U I 0 x 0 0 0 0 0 0 0 1

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParam

Parent window handle.

lpszTarget

Give the path of the destination directory.

lpszArchiveName

Give the path of the archive directory. If this is set to 0, generate automatically the

archive name according to the format.

DeleteMessages

Delete messages in the “Archive” system folder after export. If set to 1, delete messages

after export.

bDecryptAttachments

Allow to archive decrypted attachments

If set to false, attachments are not decrypted (if they are encrypted)

If set to true, encrypted attachments are decrypted in the archive LMS.

UseCompression

Compress the archive directory after export. If set to 1, the compression is used.

NumberExported

 Return the number of mails exported by the archive mechanism.

Flags

 MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

43
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Reserved

Should always be 0.

Return values:

Returns MAPI_E_FAILURE if Reserved != 0 and for all other error conditions except

those listed below.

Returns MAPI_E_INVALID_SESSION if hSession <= 0L (this call allows

hSession==0, i.e. implicit logon is allowed)

Returns MAPI_E_INVALID_ DIRECTORY if an error occurs during the move of the

message (probably because the lpszTarget or lpszArchiveName given is invalid).

44
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.30 MAPIEmptyWasteBasket
MAPIEmptyWasteBasket empty the waste basket folder.

C and C++

U L ON G M A P I E m p tyW a s t eB a s ke t (
 U L ON G S es s io n ,
 U L ON G U I P a ra m ,

 F L A G S F la g s ,
 U L ON G Res e rv e d)

Session

If this is set to 0, implicit logon will be performed. This will only succeed if a valid

session with MAPI_ALLOW_SHARED exists, or the MAPI_LOGON_UI is set.

UIParam

Parent window handle.

Flags

 MAPI_LOGON_UI must be set if the function should display a dialog box to prompt

the user for user name and password.

Reserved

Should always be 0.

Return values:

Returns MAPI_E_FAILURE if Reserved != 0 and for all other error conditions except

those listed below.

Returns MAPI_E_INVALID_SESSION if hSession <= 0L (this call allows

hSession==0, i.e. implicit logon is allowed)

45
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.31 GetRecipientInformation
GetRecipientInformation retrieved a list of recipients with their details.

C and C++

 ULONG GetRecipientInformation(

 LPHANDLE Session,

 LPSTR MessageID,

 ULONG *nRecipientCount;

 lpRecipientInformationDesc* RecipientInfo);

Session

An opaque session handles whose value represents a session with the messaging subsystem.

The session handle is returned by MAPILogon and invalidated by MAPILogoff.

MessageID

Mail’s string identifier for this message returned by MAPIFindNext or MAPISaveMail.

nRecipientCount

The number of recipient structures that the RecipientInfo attribute points to.

RecipientInfo

Point to an array of RecipientInformationDesc structures describing the recipients of the

message.

Return values:

MAPI_E_FAILURE in all other error conditions not listed below.

MAPI_E_INVALID_SESSION if Session = 0

MAPI_E_INVALID_MESSAGE if MessageID is not valid in session

Note: RecipientInfo object must be freed with MAPIFreeRecipientInformation function

46
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.31.1 RecipientInformationDesc

RecipientInformationDesc contains a MAPIRecipDesc that describe a recipient and the

RecipientDeliveryDesc delivery information associated to the recipient.

C and C++

typedef struct {

 lpMapiRecipDesc Recipient;

lpRecipientDeliveryDesc Delivery;

} RecipientInformationDesc, far *lpRecipientInformationDesc;

Recipient

MapiRecipDesc object that represst a recipient.

Delivery

RecipientInformationDesc object that defines recipient details.

2.31.2 RecipientDeliveryDesc

RecipientDeliveryDesc contains information about requested information of a recipient.

Each time field has the following format: YYYY/MM/DD HH:MM:SS. If time is not set,

value is an empty string.

C and C++

typedef struct {

 // Delivery Notification

 BOOL DNRequested;

 BOOL DNReceived;

 LPSTR DNReceivedTime;

 // Non Delivery Notification

 BOOL NDNRequested;

 BOOL NDNReceived;

 LPSTR NDNReceivedTime;

 LPSTR NDNReason;

 LPSTR NDNDiagnostic;

 // Receipt Notification

 BOOL RNRequested;

 BOOL RNReceived;

LPSTR RNReceivedTime;

// Non Receipt Notification

 BOOL NRNRequested;

BOOL NRNReceived;

47
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

LPSTR NRNReceivedTime;

 LPSTR NRNReason;

LPSTR NRNDiagnostic;

 LPSTR Answered;

 LPSTR AnsweredTime;

} RecipientInformationDesc, far *lpRecipientInformationDesc;

DNReceivedTime is available only if DNReceived is TRUE

NDNReceivedTime, NDNReason and NDNDiagnostic are available only if NDNReceived is

TRUE

RNReceivedTime is available only if RNReceived is TRUE

NRNReceivedTime, NRNReason and NRNDiagnostic are available only if NRNReceived is

TRUE

AnsweredTime is available only if Answered is TRUE

48
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.32 GetMessageInformation
GetMessageInformation retrieved details of a message.

C and C++

 ULONG GetMessageInformation(

 LPHANDLE Session,

 LPSTR MessageID,

 LpMessageInformationDesc* MessageInfo);

Session

An opaque session handles whose value represents a session with the messaging subsystem.

The session handle is returned by MAPILogon and invalidated by MAPILogoff.

MessageID

Mail’s string identifier for this message returned by MAPIFindNext or MAPISaveMail.

MessageInfo

Point to a MessageInformationDesc structure.

Return values:

MAPI_E_FAILURE in all other error conditions not listed below.

MAPI_E_INVALID_SESSION if Session = 0

MAPI_E_INVALID_MESSAGE if MessageID is not valid in session

Note: MessageInfo object must be freed with MAPIFreeMessageInformation function

49
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.32.1 MessageInformationDesc

MessageInformationDesc contains information about requested information of a message.

Each time has the following format: YYYY/MM/DD HH:MM:SS. If time is not set, value is

an empty string.

C and C++

typedef struct {

 LPSTR Status;

 LPSTR MessageID;

 LPSTR MTSID;

 INT Importance;

 INT Priority;

 INT Sensitivity;

 LPSTR InReplyTo;

 LPSTR SubmissionTime

 LPSTR DeliveryTime

 LPSTR FetchedTime

 BOOL IsForwarded

 BOOL IsReply

 BOOL ReadReceiptRequested;

 BOOL ReplyRequested;

 LPSTR ExpiredTime;

 INT Integrity;

 INT Encrypted;

} MessageInformationDesc, far *lpMessageInformationDesc;

Status

Indicate the status of the message.

MessageID

Id of the message

MTSID

Server message Id

Importance

Importance of the message. Values:

 0 = Low

 1 = Normal

 2 = High

Priority

Priority of the message. Values:

 0 = Normal

50
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

 1 = Non urgent

 2 = Urgent

Sensitivity

Sensitivity of the message. Values:

 0 = None

 1 = Personal

 2 = Private

 3 = Confidential

InReplyTo

Message id of original message

SubmissionTime

Time when the message has been submitted

DeliveryTime

Sent message: Time when the message has been delivered

Received message: This parameter is unavailable

FetchedTime

Sent message: Time when the message has been fetched

Received message: Time when the last report has been fetched

IsForwarded

Is the message a forwarded message

IsReply

Is the message a reply message

ReadReceiptRequested

Read receipt notification requested

ReplyRequested

Reply notification requested

ExpiredTime

Message expiration time

Integrity

Integrity information. Values:

 -1 = No integrity information

 0 = Integrity check failed

 1 = Integrity check succeed

Encrypted

51
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

Encryption information Values:

 -1 = Information unknown

 0 = Bodies non ecnrypted

 1 = Bodies encrypted

52
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.33 MAPIFreeRecipientInformation
Free memory allocated by GetRecipientInformation calls.

C and C++

ULONG MAPIFreeBuffer (LpRecipientInformationDesc pRecipientInfo, ULONG

RecipientCount)

 pRecipientInfo

A pointer to a RecipientInformationDesc object to be freed.

RecipientCount

Number of recipient

53
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.34 MAPIFreeMessageInformation
Free memory allocated by GetMessageInformation calls.

C and C++

ULONG MAPIFreeBuffer (LpMessageInformationDesc pMessageInfo)

 pMessageInfo

A pointer to a MessageInformationDesc object to be freed.

54
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.35 Return values and error codes
A brief list of other possible error codes:

SUCCESS_SUCCESS
#d e f in e S U C C E S S _S U C C E S S 0

No failure.

MAPI_USER_ABORT
#d e f in e M A P I _U S E R _A B ORT 1

Returned if the user presses Cancel in a dialog.

MAPI_E_FAILURE
#d e f in e M A P I _E _F A I L U RE 2

General (unspecified) error

MAPI_E_LOGIN_FAILURE
#d e f in e M A P I _E _L OG I N _F A I L U RE 3

Login went wrong for an unspecified reason.

MAPI_E_DISK_FULL
#d e f in e M A P I _E _D I S K _F U L L 4

The disk became full while MAPI was trying to save something.

MAPI_E_INSUFFICIENT_MEMORY
#d e f in e M A P I _E _ I N S U F F I C I E N T _M E M O RY 5

Lack of free memory or Windows resources.

MAPI_E_ACCESS_DENIED
#d e f in e M A P I _E _A C C E S S _ D E N I E D 6

Wrong password

MAPI_TOO_MANY_SESSIONS
#d e f in e M A P I _E _T O O_ M A N Y _S E S S I ON S 8

Attempt to log in too many applications with separate sessions, or the same application

too many times.

MAPI_E_TOO_MANY_FILES
#d e f in e M A P I _E _T O O_ M A N Y _F I L E S 9

No more free file handles in MS Windows.

MAPI_E_TOO_MANY_RECIPIENTS
#d e f in e M A P I _E _T O O_ M A N Y _RE C I P I E N T S 1 0

Attempt to save / send a message with too many recipients defined.

MAPI_E_ATTACHMENT_NOT_FOUND
#d e f in e M A P I _E _A T T A C H M E N T _N OT _F OU N D 1 1

The path or file name in a MAPIFileDesc record is not pointing to a file.

55
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

MAPI_E_ATTACHMENT_OPEN_FAILURE
#d e f in e M A P I _E _A T T A C H M E N T _OP E N _F A I L U RE 1 2

The file may be write protected or opened by another (or your) application.

MAPI_E_ATTACHMENT_WRITE_FAILURE
#d e f in e M A P I _E _A T T A C H M E N T _W RI T E _F A I L U RE 1 3

The file may be write protected or opened by another (or your) application.

MAPI_E_UNKNOWN_RECIPIENT
#d e f in e M A P I _E _U N K N OW N _ RE C I P I E N T 1 4

No dialog was allowed on sendmail or resolvename, and a RecipDesc contained a name

that was not found in the address book, or an address with a syntax error.

MAPI_E_BAD_RECIPTYPE
#d e f in e M A P I _E _ BA D _RE C I P T Y P E 1 5

Recipient type was not TO, CC or BCC

MAPI_E_NO_MESSAGES
#d e f in e M A P I _E _N O _M E S S A G E S 1 6

MAPI_E_INVALID_MESSAGE
#d e f in e M A P I _E _ I N V A L I D _M E S S A G E 1 7

An attempt was made to save or send a message that contained an error, or a message

without at least one recipient.

MAPI_E_TEXT_TOO_LARGE
#d e f in e M A P I _E _T E X T _T O O_ L A RG E 1 8

The text note was too large.

MAPI_E_INVALID_SESSION
#d e f in e M A P I _E _ I N V A L I D _S E S S I ON 1 9

The session handle was 0 or did not point to a valid MAPI session.

MAPI_E_TYPE_NOT_SUPPORTED
#d e f in e M A P I _E _T Y P E _N OT _ S U P P ORT E D 2 0

MAPI_E_AMBIGUOUS_RECIPIENT
#d e f in e M A P I _E _A M B I G U O U S _RE C I P I E N T 2 1

The specified recipient to MAPIResolveName, MAPISaveMail or MAPISendMail did

match more than one recipient, and the flag MAPI_DIALOG was not set.

MAPI_E_MESSAGE_IN_USE
#d e f in e M A P I _E _M E S S A G E _I N _U S E 2 2

The message was opened by another application (a MAPI application, MailmaX.400 or

the Mail Spooler). Note that all of these only keep the message open while it is being

saved, not while it is being viewed or edited.

MAPI_E_NETWORK_FAILURE
#d e f in e M A P I _E _N E T W O RK _F A I L U RE 2 3

A network failure occurred while MAPI was trying to save some information.

MAPI_E_INVALID_EDITFIELDS
#d e f in e M A P I _E _ I N V A L I D _E D I T F I E L D S 2 4

56
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

nEditFields to MAPIAddress was not a legal value.

MAPI_E_INVALID_RECIPS
#d e f in e M A P I _E _ I N V A L I D _ RE C I P S 2 5

MAPI_E_NOT_SUPPORTED
#d e f in e M A P I _E _N OT _S U P P ORT E D 2 6

The MaXware Simple MAPI module does not support the feature requested.

57
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.36 Sending a file using C
i n c lu d e <s td io . h >

i n c lu d e <w in d o w s . h >

i n c lu d e <m a p i . h >

M a p iF i le D e s c f i les = {

 0 , / * re s e rv ed - h a s to b e 0 */

 0 , / * 0 - M a X w a re S im p le M A P I d o e s n ' t s u p p o rt O L E *

 0 , / * n o t u s e d w h en s en d in g *

 " . \ te s t f i le" , / * a t ta c h e d f i l e n a m e */

 N U L L , / * w e d o n ’ t kn o w i t */

 N U L L } ; / * n o t u s e d in th i s e x a m p l e */

M a p iR ec ip D es c re c ip s [2] = {

 0 , / * re s e rv ed - h a s to b e 0 */

 M A P I _T O, / * o n e o f M A P I _T O/ C C */

 " Bo s s " , / * A d d r es s b o o k / f r i en d l y re c i p i en t n a m e */

 " Bo s s " , / * re c i p i en t a d d re s s - O R n a m e, h e re a l i a s */

 0 , / * n o t u s e d */

 N U L L } , / * n o t u s e d */

 { 0 , M A P I _C C , " S e cr e t a r y” , " S ec re ta ry" , 0 , N U L L } } ;

M a p iM e s s a g e n o te = {

 0 , / * re s e rv ed - h a s to b e 0 */

 " T es t f r o m S im p le M A P I " , / * m es s a g e s u b j ec t */

 " M a X w a r e S im p le M A P I 1 . 0 I n t er fa ce T es t" , / * m e s s a g e t ex t * /

 N U L L , / * m e s s . c la s s (l a t er s et t o I P _M E S S A G E) * /

 N U L L , / * d a t e re ce iv ed - n o t a p p r o p r ia te h e re */

 N U L L , / * n o t u s e d * /

 0 , / * s ta tu s - i s s e t l a t er * /

 N U L L , / * o r ig in a t o r p o i n t er - f i l l ed la te r */

 2 , / * n u m b e r o f r ec ip i en ts * /

 & rec ip s , / * p o in te r to r ec ip ie n t a r ra y */

 1 , / * n u m b e r o f a t t a c h m en ts */

 & f i le s } ; / * p o in te r to a t ta ch m e n t s t r u c t */

m a in () {

 U L ON G u l Re s ;

 L P H A N D L E s e s s io n ;

 u l Res = M A P I L o g o n (0 , " m y u s e r" , " " , 0 L , 0 , & s es s i o n) ;

 u l Res = M A P I S e n d M a i l (s es s io n , 0 L , & n o te , 0 , 0) ;

 u l Res = M A P I L o g o f f (s es s i o n , 0 L , M A P I _L O G OF F _S H A RE D , 0) ;

}

58
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.37 Reading a message with C
/ * F in d t h e l a s t (n ew es t) m e s s a g e f ro m t h e OU T T RA Y f o ld er . */

L P H A N D L E s e s s io n ;

p M a p iM es s a g e p M es s a g e = N U L L ;

ch a r m e s s id 1 [2 0] ;

u l Res = M A P I L o g o n (0 , " m yu s er" , " " , M A P I _E X P L I C I T _P ROF I L E , 0 & s es s i o n) ;

/ * f i n d t h e la s t u n r ea d m es s a g e , (s e ed M e s s a g e I D i s em p ty) */

u l Res = M A P I F in d N ex t (s es s io n , 0 L , " " , " " , M A P I _S E A RC H _ OU T T RA Y , 0 , m e s s id 0) ;

i f (u l Re s ! = S U C C E S S _S U C C E S S) { ; / * p r o c es s e r ro r */

}

/ * D o s o m e th in g w i th t h i s m es s a g e */

u l Res = M A P I L o g o f f (s es s i o n , 0 L , M A P I _L O G OF F _S H A RE D , 0) ;

/ * I f w e re a d o n e m e s s a g e s e n t f ro m Bo s s , w i th 1 a t ta c h e d f i le , t h e r es u l t i n g m es s a g e re c o rd
s h o u l d lo o k l i ke t h i s : */

M a p iM e s s a g e n o t e = {

 0 , / * re s e rv ed - h a s to b e 0 */

 " C a l l fo r m e et in g " , / * m e s s a g e s u b j ec t */

 N U L L , / * m e s s a g e tex t , t rea te d a s a t ta c h m en t . */

 " 2 " , / * U A E N T _I P _M E S S A G E * /

 " 9 4 / 0 5 / 1 2 1 0 : 2 4 : 1 5 " , / * d a t e re ce iv ed */

 N U L L , / * n o t u s e d */

 1 , / * M A P I _U N RE A D */

 & o r ig , / * o r ig in a t o r r ec o rd p o in te r */

 1 , / * n u m b e r o f r ec ip i en ts * /

 & rec ip s , / * p o in te r to r ec ip ie n t a r ra y */

 1 , / * n u m b e r o f a t t a c h m en ts */

 & f i le s } ; / * p o in te r to a t ta ch m e n t s t r u c t */

M a p iR ec ip D es c o r ig = {

 0 , / * re s e rv ed - h a s to b e 0 */

 0 , / * M A P I _O RI G */ ,

 " Bo s s " , / * f r ie n d ly r ec ip ie n t n a m e */

 " C =n o ; A = te lem a x ; S = Jo n es ; G = Jo h n ; " , / * o r ig in a t o r ’ s n a m e */

 0 , / * n o t u s e d */

 N U L L } ; / * n o t u s e d */

M a p iR ec ip D es c re c ip s = {

 0 , / * re s e rv ed - h a s to b e 0 */

 1 , / * M A P I _T O */ ,

 m yu s e r" , / * f r ie n d ly r ec ip ie n t n a m e */

 " C =n o ; A = te lem a x ; . . . " , / * m y O/ R n a m e */

 0 , / * n o t u s e d */

 N U L L } ; / * n o t u s e d */

M a p iF i le D e s c f i les = {

 0 , / * re s e rv ed - h a s to b e 0 */

 0 ,

 - 1 , / * n ev er O L E */

 " c : \ m a i lm a x \ m y u s er \ h - 0 0 0 0 0 2 \ h d r - 2 8 . b 0 1 " , / * a t ta c h e d f i l e n a m e * /

 " c : \ tem p \ b p 0 0 3 6 5 4 " , / * th e n a m e o f t h e f i le a s w e s e e i t * /

 " ia 5 " } ;

/ * A s s u m e t h a t m e s s a g e s w e re in th e fo l l o w i n g o rd er i n t h e I N T RA Y .

I D S ta tu s D a te

1 0 5 0 rea d 1 0 . 0 5

1 0 4 8 U N RE A D 0 9 . 0 5

1 0 4 7 U N RE A D 0 9 . 0 5

59
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

1 0 3 0 rea d 0 8 . 0 5 * /

60
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.38 Read unread messages with C
\ *

F in d t h e f i r s t ‘ u n r ea d ’ l e t t er , ‘ re a d ’ i t b u t lea v e i t ‘ u n rea d ’ . F in d t h e n e x t m es s a g e (d o n ' t
ca r e i f ‘ rea d ’ o r ‘ u n re a d ’) . R ea d t h e w h o le m es s a g e a n d p ro ce s s t h e t ex t n o te a s a n
a t ta c h m en t . * /

L P H A N D L E s e s s io n ;

p M a p iM es s a g e p M es s a g e = N U L L ;

ch a r m e s s id 0 [2 0] , m e s s id 1 [2 0] ;

u l Res = M A P I L o g o n (0 , " m yu s er" , " " , M A P I _E X P L I C I T _P ROF I L E , 0 , & s es s i o n) ;

u l Res = M A P I F in d N ex t (s es s io n , 0 L , " " , " " , M A P I _U N RE A D _ ON L Y , 0 , m es s i d 0) ;

i f (u l Re s ! = S U C C E S S _S U C C E S S) { ; / * p r o c es s e r ro r */

} / * m e s s id 0 h a s v a l u e 1 0 4 8 */

/ * f i n d t h e n e x t m es s a g e th a t i s o ld er t h a n t h e m es s a g e j u s t fo u n d */

u l Res = M A P I F in d N ex t (s es s io n , 0 L , " " , m e s s id 0 , 0 , 0 , m es s id 1) ;

i f (u l Re s ! = S U C C E S S _S U C C E S S) { ; / * p ro ce s s er r o r */

} / * m e s s id 1 h a s v a l u e 1 0 4 7

u l Res = M A P I R ea d M a i l (s es s i o n , 0 L , m es s i d 0 , M A P I _B OD Y _ A S _F I L E | M A P I _P E E K , 0 ,
& p M es s a g e) ;

/ * D o s o m e th in g w i th t h e in f o rm a t i o n in p M e s s a g e */

u l Res = M A P I F re eBu f fe r (p M e s s a g e) ;

u l Res = M A P I L o g o f f (s es s i o n , 0 L , M A P I _L O G OF F _S H A RE D , 0) ;

61
MaXware S imple MAPI funct ions
Mai lmaX.400 for Windows Programmer 's Guide

2.39 Delete messages with a certain subject
/ * D e le te m a i l */

U L ON G u lR es ;

L P H A N D L E s e s s io n ;

p M a p iM es s a g e p M es s a g e = N U L L ;

ch a r m e s s id 0 [2 0] , m e s s id 1 [2 0] ;

u l Res = M A P I L o g o n (0 , " m yu s er" , " " , M A P I _E X P L I C I T _P ROF I L E , 0 , & s es s i o n) ;

u l Res = M A P I F in d N ex t (s es s io n , 0 L , " " , " " , 0 , 0 , m es s i d 1) ;

w h i le (u l Re s = = S U C C E S S _S U C C E S S) {

 / * F o r s im p l i c i ty - w e d o n ' t t es t o n er ro rs w h en r ea d in g a n d d e le t i n g m a i l !

 * /

 u l Res = M A P I R ea d M a i l (s es s i o n , 0 L , m es s i d 1 , M A P I _P E E K | M A P I _E N V E L OP E _ ON L Y , 0 ,
& p M es s a g e) ;

 / * D e le te a l l r ea d m es s a g e s w i t h th e w o rd ' tes t ' i n th e s u b j ec t .

 * /

 i f ((! (p M es s a g e - > f lF la g s & M A P I _U N RE A D))

 & & (s t r s t r (p M es s a g e - > lp s z S u b j e ct , " t es t"))) {

 u l Res = M A P I D e l e teM a i l (s e s s io n , 0 , m e s s id 1 , 0 L , 0) ;

 m es s id 0 [0] = ' \ 0 ' ; / * n o s e ed */

 }

 e l s e

 s t rc p y (m es s i d 0 , m es s i d 1) ; / * s e t n ew s eed * /

 u l Res = M A P I F in d N ex t (s es s io n , 0 L , " " , m e s s id 0 , 0 , 0 , m es s id 1) ;

 }

 u l Re s = M A P I L o g o f f (s e s s io n , 0 L , M A P I _L OG OF F _S H A RE D , 0) ;

62
DDE programming wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

3. DDE programming with MailmaX.400

3.1 Introduction
MailmaX.400 for Windows can receive simple commands through Windows DDE

(Dynamic Data Exchange). These calls are intended to make it possible for Windows

programs with DDE capability to send X.400 messages.

In Windows terminology, MailmaX.400 acts as a “DDE Server” and will handle calls

from “DDE Clients”.

Procedures:

To give commands to MailmaX.400 for Windows with DDE:

• Start MailmaX.400 (if not started already).

• Create a DDE link with the following parameters:

 Application: Mailmax

 Topic: System

 Command: Help

MailmaX.400 will now return a short string describing the commands available.

• Use DDE calls to execute one or more commands. The list of commands available is

documented below.

• Terminate the DDE link.

63
DDE programming wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

3.2 DDE Commands

SendAndReceive

(no parameters)

Asks MailmaX.400 to connect to the central Message Store, send all messages with

status “Ready” and fetch all messages waiting in the Message Store.

CreateMessage

Creates a message in the MailmaX.400 OUTTRAY.

Parameters:

Flag, Subject, File name, Recipient(s)

 Flag = 0: MailmaX.400 packages the document as an attachment, adds

recipients and subject, and shows the “Compose message”

window on the screen for the user to finish the message.

 Flag = 1: The message is stored directly in the OUTTRAY with the

status “Ready” without asking the user for additional

parameters.

 Flag = 3: The message is stored directly in the OUTTRAY with the

status “Ready” without asking the user for additional

parameters, and MailmaX.400 is asked to transfer all mess-

ages with the status “Ready”. (Sending only - no messages

are fetched).

 Subject: A text string is added as the message subject. The subject

string is enclosed by quotation marks (“) if it contains spaces

or commas.

 File name: Name of file attached to the message.

Note 1: MailmaX.400 uses pattern recognition to identify the

file type of the document, so that when the recipient sees the

document in the OUTTRAY, it is displayed with the icon of

the program in which it was created. Seven-bit files are sent

as the type “Text”, while files containing binary data are sent

as the type “Data”.

Note 2: If the user does not edit the message (in the

“Compose message window), the attachment created with

this call is sent as the first and only document in the message

(X.400 BodyPart).

 Recipient(s): A list of valid recipients to be added to the message. When

multiple users are defined, use a comma as the delimiter

between names. Each recipient may be identified by any one

of the following:

• A short name defined in the MailmaX.400 address book.

• An address list defined in the MailmaX.400 address book.

• An X.400 address in the form:
S=Maxdata;O=Maxdata;A=Service;C=NO

The recipient list must be enclosed in quotation marks (“) if it

contains blanks or commas.

Help:

64
DDE programming wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

ddeExecute with the command Help will make MailmaX.400 display a dialog box

documenting the DDE calls.

AddRecipients

Adds the recipients from another application (for example MaXware Directory Explorer

or MaXware Directory Browser) to an open Compose window. If the Compose window

is not open, the AddRecipients command opens it to create a new message.

Parameters:

Recipient(s)

 Recipient(s): See the description of this parameter for the CreateMessage

command..

Help: ddeExecute with the command Help will make MailmaX.400 display a dialog box

documenting the DDE calls.

65
DDE programming wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

3.3 Starting MailmaX.400 for Windows
When you start MailmaX.400 for Windows, you can use the parameter “fast” on the

command line:

mailmax.exe fast

This causes MailmaX.400 to start without opening folders as windows or icons. Only the

OUTTRAY Folder is opened. When the user exits MailmaX.400, the configuration

changes are not stored.

When MailmaX.400 is started from a program that immediately attempts to establish a

DDE link with MailmaX.400, the DDE call will fail. The reason is that MailmaX.400

must be started with a user name and password before it can respond to a DDE call. To

avoid this problem, the calling program can wait for a while after MailmaX.400 has been

started before DDE communication is attempted. The Access example below

demonstrates a different strategy: it is possible to keep on trying DDE until it is

successful, or until a counter is full.

66
DDE programming wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

3.4 C example
H A N D L E h L ib I n s t a n ce ; / / L i b r a r y m o d u le h a n d l e

in t S t a r t B y D D E (s D o c u m e n t n a m e)

{ C ON V C O N T E X T C C F i l t er = { s i z eo f (C O N V C O N T E X T) , 0 , 0 , 0 , 0 L , 0 L } ;

 D W ORD i d I n s t = 0 ;

 H S Z h s z A p p N a m e = N U L L ;

 H S Z h s z T o p ic = N U L L ;

 H C ON V h C o n v = N U L L ;

 BO OL b R es = F A L S E ;

 / * M a i lm a X . 4 0 0 m u s t b e ru n n in g */

 / * Bu i l d th e D D E co m m a n d : */

 s t rc p y (cD D E C o m m a n d , " [C r e a te M e s s a g e(0 , , ") ;

 s t rc p y (cL a s t , " ,)] ") ;

 s t rca t (cD D E C o m m a n d , s D o c u m en t n a m e) ;

 s t rca t (cD D E C o m m a n d , cL a s t) ;

 cD D E A p p l i ca t i o n [] = " M a i lm a X " ;

 cD D E T o p i c [] = " s ys tem " ;

 C C F i l te r . iC o d eP a g e = C P _W I N A N S I ; / / i n i t i a l d e f a u l t c o d e p .

 i f (! D d e I n i t ia l i z e (& id I n s t ,

 (P F N C A L L BA C K) M a k eP r o c I n s t a n c e((F A RP R OC) D d eC a l lb a c k ,

 h L i b I n s t a n c e) , A P P C M D _F I L T E RI N I T S , N U L L))

 { h s z A p p N a m e=D d eC re a t eS t r in g H a n d l e (id I n s t , l p A p p N a m e, N U L L) ;

 h s z T o p ic =D d eC re a t eS t r in g H a n d le (i d I n s t , lp T o p i c , N U L L) ;

 h C o n v =D d eC o n n ec t (id I n s t , h s z A p p N a m e, h s z T o p ic , N U L L) ;

 i f (h C o n v)

 { b R es =D d eC l i en tT r a n s a c t io n (l p E x e cC o m m a n d ,

 l s t r le n (lp E x ecC o m m a n d) +1 ,

 h C o n v , N U L L , C F _T E X T , X T Y P _E X E C U T E , 1 0 0 0 0 0 0 L , N U L L) ;

 D d eD is co n n e ct (h C o n v) ;

 }

 D d eF re eS t r in g H a n d l e (id I n s t , h s z A p p N a m e) ;

 D d eF re eS t r in g H a n d l e (id I n s t , h s z T o p ic) ;

 D d eU n i n i t ia l i z e (id I n s t) ;

 }

 r e tu rn (b R es) ;

}

H D D E D A T A E X P E N T R Y D d e C a l l b a c k (W O R D w T y p e , W O R D w F m t , H C O N V

 h C o n v , H S Z h s z T o p ic , H S Z h s z I t e m , H D D E D A T A h D a t a , D W O R D

 lD a t a 1 , D W O R D l D a t a 2)

{ s w i tc h (w T yp e)

 { c a s e X T Y P _C ON N E C T _C O N F I RM :

 re tu rn (0) ;

 b re a k ;

 c a s e X T Y P _D I S C ON N E C T :

 re tu rn (0) ;

 b re a k ;

 d e f a u l t :

 b re a k ;

 }

 r e tu rn (0) ; }

67
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4. Controlling the communication
process

4.1 Introduction to the MaXware Mail
Spooler

The MaXware Mail Spooler is a separate module in the MailmaX.400 for Windows

product. The Mail Spooler handles all communication triggered by the user

(MailmaX.400 commands), by applications, and / or by timer events (time intervals).

The module is implemented as a separate .EXE file, and installed with MailmaX.400 for

Windows and MaXware Simple MAPI for Windows.

4.2 Architecture

MailmaX

Mail Spooler
MaXware Simple MAPI.dll

UA-FI

Applications

LMS

68
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4.3 Basic features
• The Mail Spooler is asynchronous to and runs in parallel with the calling application

and MailmaX.400.

• It is callable from MailmaX.400 for Windows and other applications by DDE

• The MailmaX.400 communication commands are implemented as Mailbox

Commands: Send, Fetch, List, Send and Receive, etc.

• There is support for scheduled Mailbox Commands at fixed intervals.

• The Mail Spooler will stay active until the communication process is finished, even

if the application logs off.

• The Mail Spooler will report a summary back to the calling application with the

main results of the communication session.

• It is possible to run the Mail Spooler by giving only a user name, without a

password, since the user cannot access local data through the Mail Spooler. (The

default user name in MAXWARE.INI makes it feasible to have the spooler loaded at

startup).

• The Mail Spooler keeps a queue of DDE-calls, if more than one application tries to

give calls while communication is active.

4.4 Configuring the Mailbox Commands
You define the mailbox commands using the dialog box “Mailbox commands” in

MailmaX.400:

• Select Tools/Options/Mailbox Commands

The following dialog box is displayed:

The list box to the left lists all the defined Mailbox Commands

69
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4.5 Start the Mail Spooler

Startup:

maxspool <User name, <MailboxCommand>> <-Setup>

Parameters:

User Name:

Local (LMS) user name.

MailboxCommand:

If present, run this MailboxCommand and then terminate immediately.

-Setup:

Use this option to enter the Setup window directly.

(No logon necessary)

70
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4.6 DDE commands to the Mail Spooler
Service: MaxSpool

Topic: System

Syntax: [DDE command]

4.6.1 Logon (User Name)

Used to change the User Name / LMS / O/R-Name for the Mail Spooler.

Note that the user name must be in double quotes if it contains spaces or other special

characters (characters other than A-Z and 0-9).

4.6.2 Connect(MailboxCommand)

Connect according to parameters at startup/logon and the Connect MailboxCommand

given.

Parameter:

MailboxCommand:

The name of a defined MailboxCommand to invoke.

Note that it is normally preferable to use the command number and NOT the name, as

the names will vary with the language of MailmaX.400, and with user preferences.

4.6.3 IniFileChanged()

Signals to the Mail Spooler that the .INI file has changed, so a re-initialization is

necessary.

4.6.4 OUTTRAYChanged()

Signals to the Mail Spooler that a letter is stored in the OUTTRAY with state 'Ready', or

that the state of a letter in the OUTTRAY has changed to 'Ready'. Note that the Simple

MAPI API and MailmaX.400 for Windows do this automatically when a new message

is submitted.

4.6.5 LogOff(LogOffFlag)

Note: It is not necessary to call LogOff if logon was done on the command line, as

logoff is then done automatically.

LogOffFlag values:

• 1: Terminate spooler

71
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4.7 DDE Services from the Mail Spooler

4.7.1 State

Service: MaxSpool

Topic: System

Item: State

One of: “Idle”, “Preparing”, “Communicating”, “Processing”

4.7.2 Mail

Service: MaxSpool

Topic: System

Item: Mail

Data: TAB delimited list of parameters:

 Error Status: Integer, 0 = ok, >0 = 32bit MaXware module+error msg no

 NewMessages: Integer

 SentMessages: Integer

 UnreadMessages: Integer

 FailedMessages: Integer

The ‘Unread’ counter is updated each time the MailSpooler wakes up, to capture any

letters read since last time, and when a communication session is completed. The value

is also reflected in the program’s caption as described above.

4.7.3 ErrorText

Service: MaxSpool

Topic: System

Item: ErrorText

The Error text of any error reported in the Item: Mail, Always "" when ErrorStatus is 0

in the item ‘Mail’.

72
Contro l l ing the communicat ion process
Mai lmaX.400 for Windows Programmer 's Guide

4.8 DDE System topics
Service: MaxSpool

Topic: System

Items:

"Topics"

A list of supported topics (System, Status)

"Formats"

“Text”

"TopicItemList"

A list of supported items under System (Topics, Formats, TopicItemList, Help, logon,

mail, state, errortext)

"Help"

A string containing a description of the supported calls (logon, connect,

OUTTRAYChanged Logoff)

"Version"

A string containing version.revision <space> language code of the Mail Spooler.

73
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5. Hooks for calling an Extension DLL
library

5.1 General
It is possible to register up to ten Extension DLLs containing C routines which will be

called by MailmaX.400, the MaXware Mail Spooler, the MaXware S-MAPI, on certain

events, like:

  When opening a message OnMessageOpen

  When saving a message OnMessageSave

  When setting a message as “Ready to send” OnSubmit

  When processing messages to be sent OnConnect

  When processing incoming messages OnDisconnect

  When connecting to the MS or DSA OnCommunicationStart

  When disconnecting from the MS or DSA. OnCommunicationEnd

To register the Extension DLL and its routines, insert the statement “ExtensionN” in the

[Communication] section of the <service profile>.PRF file for MailmaX.400 :

[C o m m u n ica t io n]

E x te n s io n 1 = <E x ten s i o n N a m e >, < im p l em en te d - b i tm a p >, < f i l en a m e a n d p a t h >

Note:

The number N after ‘Extension’ must be in the range 1-10.

The <ExtensionName> is a user-oriented name for the Extension DLL. It is shown in

the “About…” box of MailmaX.400.

The <implemented-bitmap> is a 32-bit integer (decimal) that tells which routines are

included in the Extension DLL. The following flags are defined:

cOnSubmit = 64

cOnConnect = 128

cOnDisconnect=256

cOnCommunicationStart=512

cOnCommunicationEnd=1024

cOnMessageOpen=2048

cOnMessageSave=4096

The <filename and path> should contain the name of an Extension .DLL file in either

the MailmaX directory, the MS-DOS path, or in the \windows\system directory. If the

.DLL file name contains the two characters ??, they will be substituted with the two-

letter ISO-language code of the MailmaX.400 version that is trying to call the DLL.

This file name may also be an absolute path pointing to the DLL.

Examples:

CHKMSG??.DLL expands to CHKMSGEN.DLL, CHKMSGFR.DLL, etc.

74
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.2 Routines and data structures in the
Extension DLL library

An Extension library to be used with the MaXware products MUST implement the

“Initialize” and the “Terminate” routine. In addition, the library may implement one or

more of the “event-handling routines” that will be called by MailmaX.400 when the

corresponding event occurs.

Each event-handling routine in the library must be declared by setting the corresponding

bit in the <implemented-bitmap> field in the “ExtensionN” statement in the service

profile file as described above. No flag is needed to signal that the Initialize and

Terminate calls are implemented.

The following MaXware programs/modules may call routines in the Extension DLL:

• MailmaX.400 for Windows.

• The MaXware Mail Spooler.

• The MaXware Simple MAPI.

The Extension .DLL must be implemented so that this does not cause a problem for the

calling MaXware program.

The routines in the Extension library must be able to display their own error message

dialogs.

NOTE: All flags that are not used must be set to 0.

75
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.3 Initialize

lo n g F A R P A S C A L __ ex p o r t I n i t i a l i z e (

 lp M A X F L A G S p F la g s ,

 lp M A I L M A X V E RS I ON p M x V e r ,

 L P S T R s z a r I d en t)

The Initialize routine will always be called by the calling MaXware program/module

before any other routines in the Extension .DLL are called. If any error occurs when

trying to load the Extension DLL, the calling MaXware program will continue as if no

Extension DLL had been registered.

Parameters:

Flags

32-bit flag word. Reserved for future use. Must always be set to 0.

Version

A pointer to a MaXware version struct describing the program/module that is calling the

Extension .DLL. The version struct is described below.

ExtensionIdent

A pointer to a buffer containing up to 40 bytes, identifying and describing the extension

DLL being used. The calling MaXware program will set up this buffer and the pointer.

The called Extension .DLL may fill in a string in the buffer. The calling MaXware

program may show the string in its Help/About dialog.

The MaXware version struct:

ty p ed e f s t ru ct

 in t S t r u c tV e rs i o n ,

 H W N D M a i n W in d o w ,

 L ON G F la g s ,

 in t P ro g ra m

 ch a r *V e rs io n ,

 ch a r *C o m m s D r i v e r V e rs io n ,

 ch a r *D r i v e r ,

 ch a r *Ow n OR N a m e,

 ch a r *L a n g u a g e ,

 ch a r *U s er N a m e,

 ch a r *U s erP ro f i le N a m e,

 ch a r * I n s ta l la t i o n P a th)

M a i lm a x V er s i o n ;

Where:

StructVersion

Set to 0.

76
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

MainWindow

A handle to the main window of the program (MailmaX.400, or S-MAPI, or Mail

Spooler) that is calling the Initialize routine.

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program

Program

Identifies the program that is calling the Initialize routine:

 0: MailmaX.400 for Windows.

 1: The MaXware Mail Spooler.

 2: The MaXware Simple MAPI.

Version

A string containing the version id of the program that is calling the Initialize routine.

NOTE: The Mail Spooler and Simple-MAPI will pass the version id describing

MailmaX.400 for Windows.

CommsDriverVersion

If MailmaX.400, Mail Spooler or S-MAPI is calling the Initialize routine, a string

describing the currently used version of the MaXware UA-FI communication module is

passed (like 3.3.02).

Driver

A string describing the communication driver type: APS, EIC, ATL or TCP. Other

drivers may be added later.

OwnORName

If MailmaX.400, Mail Spooler or S-MAPI is calling, the calling user's own X.400

address (given as a string on F.400 syntax) is passed.

Language

The language version of the program. Two-letter ISO language code (US, EN, FR, IT,

NO......).

UserName

The full User Name of the current user, as used when logging into MailmaX.400, S-

MAPI or the Mail Spooler.

UserProfi leName

The “filtered” and “truncated” version of the “MailmaX.400” UserName, used in the

file system directory-name for this user’s directory (e.g. c:\mailmax\john) and as the

name for the “user name” in the [USER.<user name>] section in MAXWARE.INI.

Characters that are not part of the “Printable string” set are filtered out, and the name is

truncated to 8 characters (if necessary).

Instal lationPath

The file system directory where the calling program is installed.

77
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.4 OnMessageOpen
This routine is called:

• When the user opens a message from the Folder Window in MailmaX.400

(regardless of folder and message status).

• When the user opens a Forwarded BP (message) in the “View” Window or in the

“Compose” window of MailmaX.400.

• When the “Print” tool button in MailmaX.400 is pressed.

• When the command “File/Print...” in MailmaX.400 is activated.

• When the “Export” command in MailmaX.400 is activated

Routine definition:

lo n g F A R P A S C A L __ ex p o r t O n M e s s a g eOp en (

 lp M A X F L A G S p F la g s ,

 lp M a p iM e s s a g e p M e s s a g e ,

 U L ON G I d ,

 in t i S t a t u s ,

 in t i E v e n t)

78
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

Parameters:

pFlags

32-bit flag word. If the message is read, the flag cMessageRead will be set.

pMessage

A pointer to a Simple-MAPI “MapiMessage” structure defining the message to be

opened. The exact definition of this structure can be found in the “MailmaX.400 for

Windows Programmers Guide”, or in the Microsoft Simple MAPI documentation.

Id

LMS Reference number

iStatus

The status of the message:

 1000 : Outgoing message with status “Draft”.

 1001 : Outgoing message with status “Ready”.
 (1002 : Outgoing message with status “Submitting”.)

 1003 : Outgoing message with status “Sent”.

 1004 : Outgoing message with status “Delivered”.

 1005 : Outgoing message with status “Read”.

 1006 : Outgoing message with status “Replied to”.

 1007 : Outgoing message with status “Failed”.

1100 : Incoming message.

 (1101 : Incoming message with status “Expired”)

 (1102 : Incoming message with status “Obsolete”.)

Event

 The event that caused OnMessageOpen to be called:

 0: Open message from a Folder was activated

 1: The Print tool button was activated.

 2: The File/Print command was activated.

 3: The File/Export command or Export tool button was activated.
If the return value is 0 (success and message processed), MailmaX.400 will NOT

process the event.

If the return value is 1 (message not processed), MailmaX.400 will process the event.

If the return value is 2 (failure), MailmaX.400 will not process the event (terminate the

operation of the event).

Note: The routine OnMessageOpen is responsible for its own error handling and error

dialogs. The return value is only used to tell MailmaX.400 whether it should complete

the operation or not.

79
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.5 OnMessageSave
This routine is called:

• When the user saves a message from the MailmaX.400 Compose window.

• When the user saves a message using MapiSendMail, MapiSendDocuments

or MapiSaveMail

Routine definition:

lo n g F A R P A S C A L __ ex p o r t O n M e s s a g eS a v e(

 lp M A X F L A G S p F la g s ,

 lp M a p iM e s s a g e p Or ig i n a lM es s a g e ,

 lp M a p iM e s s a g e F A R * p p N ew M e s s a g e ,

 L P I N T p S en s i t i v i t y ,

 BO OL b P a s t e I s D o n e)

Parameters:

pFlags

32-bit flag word. If the extension returnes a changed message in ppNewMessage, the

cOnSaveChangedFlag has to be set

pOriginalMessage

A pointer to a Simple-MAPI “MapiMessage” structure defining the message to be

saved. The exact definition of this structure can be found in the “MailmaX.400 for

Windows Programmers Guide”, or in the Microsoft Simple MAPI documentation.

ppNewMessage

Pointer to a pointer to a new “Mapi Message”. This message will be saved on the return

to MailmaX.400.

pSensitivity

The value of the sensitivity parameter set by MailmaX.400.

0 = None, 1 = Personal, 2 = Private, 3 = Confidential.

The parameter may be changed by the extension DLL.

(The message must be returned by ppNewMessage, and the changed flag must

be set.)

80
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

bPasteIsDone

When this parameter is true, it reports that a paste has been done in the Compose

window of MailmaX.400

If the return value is 0, the changed flag will be checked. If the flag is not set, the

original message is saved; if it is set, the new message is saved.

If the return value is 1, no message will be saved. MailmaX.400 will return to the

Compose window, and MAPI will return MAPI_FAILURE.

NOTE: The routine OnMessageSave is responsible for its own error handling and error

dialogs. The return value is only used to tell MailmaX.400 whether it should complete

the operation or not.

81
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.6 OnSubmit

lo n g F A R P A S C A L __ ex p o r t O n S u b m i t (

 lp M A X F L A G S p F la g s ,

 lp M a p iM e s s a g e p M e s s a g e)

The OnSubmit routine is called by MailmaX.400 and MaXware Simple MAPI when a

message is to be saved to the OUTTRAY with the status ‘Ready’ (ready to be sent).

Parameters:

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program.

Message

A pointer to a Simple-MAPI structure defining the message to be submitted. For the

exact definition of this structure, see the “MailmaX.400 for Windows Programmers

Guide”, or the Microsoft Simple MAPI documentation.

If the return value from the OnSubmit routine is 0 (success), the MailmaX.400/Simple

MAPI operation “Save to Outtray” is performed as usual.

If the return value is different from 0, the following actions are performed by the calling

program:

• If OnSubmit was called from the MailmaX.400 “Compose window”:

The Compose window is still open and the message has not been saved. The user

must modify the message according to the error/warning message that was given by

the OnSubmit routine.

• If OnSubmit was called from the MailmaX.400 command “Mailbox/Ready to Send”:

The message is still stored with status “Draft”.

• If OnSubmit was called from the MaXware Simple MAPI “Compose window”:

The Compose window is still open and the message has not been saved. The user

must modify the message according to the error/warning message that was given by

the OnSubmit routine.

• If OnSubmit was called from one of the Simple MAPI routines MAPISendMail or

MAPISendDocument:

The MAPI error code MAPI_E_INVALID_MESSAGE will be returned.

NOTE: The OnSubmit routine is responsible for its own error handling and error

dialogs. The return value is only used to tell MailmaX.400 / Simple MAPI whether the

“Save to Outtray” operation should be completed or not.

82
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.7 OnConnect

lo n g F A R P A S C A L __ ex p o r t O n C o n n ec t (

 lp M A X F L A G S p F la g s ,

 in t i S p o o le rC o m m a n d ,

 L P S T R p C o m m a n d F i l e ,

 W ORD w C o m m a n d L e n ,

 L P S T R p Re s p o n s eF i l e ,

 W ORD w Res p o n s eL e n)

The OnConnect routine is called by the Mail Spooler when MailmaX.400, an

application using the Mail Spooler, or an automatic Mail Spooler scheduling rule makes

the Mail Spooler connect to the Message Store. OnConnect is called BEFORE any

processing is done by the Mail Spooler (this means that OnConnect may

add/delete/modify messages in the Local Message Store, but it can NOT modify the

“Standard UA-FI CommandFile” to be generated by the Mail Spooler after the return

from OnConnect).

The parameters CommandFile and ResponseFile must be set up by the OnConnect

routine, and must be valid file names. The CommandFile must point to a valid UA-FI

CommandFile to be INCLUDED in the “Standard UA-FI CommandFile” made by the

Mail Spooler.

The Mail Spooler will include the specified Command file into the “Standard UA-FI

Command file” by inserting the UA-FI INCLUDE command (See the “UA-FI

Programmer Guide”). The flag “After” specifies the insertion position for the specified

CommandFile in the “Standard UA-FI Command file”.

NOTE: The routines OnConnect / OnDisconnect will NOT be called if the Mail

Spooler connects to the Message Store to change the Mailbox password.

83
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

Parameters:

Flags

32-bit flag word. Is set to 0 by the calling MaXware program.

Defined flags:

After=1. If this flag is NOT set by the OnConnect routine, the Mail Spooler inserts

the “INCLUDE command” before any MailmaX.400-generated UA-FI commands in

the main UA-FI Command file. If the flag is set, the “INCLUDE command” is

inserted before the MailmaX.400 generated UA-FI commands.

SpoolerCommand

Integer describing the Mail Spooler mailbox command that caused the OnConnect

routine to be called.

 0: Send and Fetch

 1: Send

 2: Send and List

 3: List

 4: Fetch Marked Messages

 >4: User-defined Mail Spooler commands

CommandFile

Pointer to a buffer containing the file name of the UA-FI CommandFile to be included

in the “Main UA-FI CommandFile”. An empty string for the CommandFile name

indicates that no CommandFile is to be included. The buffer is set up by the Mail

Spooler.

CommandLen

Size of the buffer for the CommandFile file name. The size is given by the Mail

Spooler.

ResponseFile

Pointer to a buffer containing the file name of the UA-FI ResponseFile in which the

results of the included CommandFile should be written. An empty string for the

ResponseFile name indicates that the results of the included CommandFile must be

written to the “Standard ResponseFile” (UAFI.CMD on the \uafiwork sub-directory for

the current user). The buffer is set up by the Mail Spooler.

ResponseLen

Size of the buffer for the ResponseFile file name. The size is given by the Mail Spooler.

If the return value is 0 (success), the Mail Spooler will continue preparing messages to

be sent and the “Standard UA-FI CommandFile”, and will connect to the Message Store

as usual.

If the return value is different from 0, the Mail Spooler operation is aborted. The Mail

Spooler will not connect to the Message Store.

84
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.8 OnDisconnect

lo n g F A R P A S C A L __ ex p o r t O n D i s c o n n e ct (

 lp M A X F L A G S p F la g s)

The Mail Spooler calls OnDisconnect when it has disconnected a connection to the

Message Store, and processed the “Standard UA-FI ResponseFile” (e.g. put new

messages into the LMS). OnDisconnect is called BEFORE any auto-foldering actions

are done on the new messages in the LMS.

MailmaX.400 will NOT show the new messages (refresh the INTRAY) to the end user

before the OnDisconnect routine has returned. The user is not allowed to manipulate

new messages before the OnDisconnect routine is finished.

There are no parameters - normally this routine will act upon UA-FI statements found in

the Response file that was handed over to the Mail Spooler (included) with the

OnConnect call.

Typical operations performed by a OnDisconnect routine:

• Process the results of the included UA-FI CommandFile.

• Delete (from the LMS) messages that were sent successfully.

• Process fetched messages.

The OnDisconnect routine may also use Simple MAPI to read/modify new messages in

the LMS.

Parameters:

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program.

Return value

The return value must always be 0, as this version of the Mail Spooler does not use it.

85
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.9 OnCommunicationStart

lo n g F A R P A S C A L __ ex p o r t O n C o m m u n i ca t i o n S ta r t (

 lp M A X F L A G S p F la g s ,

 L P S T R s z a rE r ro r)

OnCommunicationStart is called by the Mail Spooler just before starting UA-FI to

connect to the MS.

Typical operations performed by a OnCommunicationStart routine:

• Start a TCP-IP dialer to establish a dial-up IP-link connection to a TCP/IP network.

Parameters:

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program.

ErrorMessage

A pointer to a buffer containing an textual error message stating why the connection to

the MS/DSA could not be established. The string can contain a maximum of 256 bytes.

The buffer and pointer are set up by the calling MaXware program.

If the Mail Spooler is the calling program, the Mail Spooler will write the ErrorMessage

to the UAFI.RSP ResponseFile as “ABORTED : <ErrorMessage>“ (as the only

statement in the ResponseFile), so that the OnDisconnect routine knows that the

communication failed. The Mail Spooler will call the OnDisconnect routine before

aborting.

The return value 0 (success) means that the Mail Spooler can continue connecting to the

server.

The return value 1 (failure) means that the Mail Spooler should not connect to the

server. The OnCommunicationStart routine is responsible for giving an error message,

etc. to the end user in its own dialog.

The return value 2 (wait) means that the Mail Spooler should wait 1 second and then

call the OnCommunicationStart again. This allows the OnCommunicationStart routine

to have a loop waiting for the IP dialer to set up the connection.

86
Hooks for ca l l ing an Extens ion DLL l ibra ry
Mai lmaX.400 for Windows Programmer 's Guide

5.10 OnCommunicationEnd

lo n g F A R P A S C A L __ ex p o r t O n C o m m u n i ca t i o n E n d (

 lp M A X F L A G S p F l a g s)

OnCommunicationEnd is called by the Mail Spooler immediately after the UA-FI

communication session with the MS is finished

Typical operations performed by a OnCommunicationEnd routine:

• Signal to a TCP/IP dialer that the IP-Link connection to the TCP/IP network

should be disconnected.

Parameters:

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program.

The return value must always be 0, as this version of the Mail Spooler does not use it.

5.10.1 Terminate

lo n g F A R P A S C A L __ ex p o r t T erm i n a te (

 lp M A X F L A G S F la g s)

Terminate is always called when the calling MaXware program has finished using the

Extension DLL library.

Parameters:

Flags

32-bit flag word. Reserved for future use. Is set to 0 by the calling MaXware program.

87
Star t p rogram f rom Mai lmaX.400 command
Mai lmaX.400 for Windows Programmer 's Guide

6. Start program from MailmaX.400
command

If you have made a mail-related application, and want it to appear as a command in

MailmaX.400 for Windows, you can define it in the [Menu] section in

MAXWARE.INI:

[Menu]

AddentryN=<sub-menu number>,<menu text>,<.EXE file name>

Where N is a number, all commands from 1 to the first missing number will be

included.

The sub-menu number starts with 0 as the File menu, 1 as the Edit menu, etc.

Example:
[M en u]

a d d en tr y1 =0 , & S ec u r e m a i l , C : \ W A \ M M W \ m a i l er . ex e

a d d en tr y2 =1 , & M a X w a re . I n i , n o t ep a d c : \ w a \ m m w \ m a x w a r e . in i

a d d en tr y3 =1 , & U A - F I . L OG , n o t ep a d c : \ w a \ m m w \ u a - f i . lo g

88
F i le v iewers in Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

7. File viewers in MailmaX.400
MailmaX.400 for Windows automatically recognizes the most common file types used

by Windows programs. MailmaX.400 uses the table file DOCMAGIC, which is

described later in this guide, to perform pattern recognition.

NOTE: For the right program to be started when the user double-clicks on an

attachment icon, it is important that the program is installed correctly. You check this in

Program Manager by double-clicking a document file generated by the program and

seeing whether the program starts and the document is opened in it. If the program is

correctly registered in the REGEDIT database in Windows, MailmaX.400 hands the

document over to the program without starting a new copy of the program. If the pro-

gram has registered a printing command in REGEDIT, it will also be possible to print

attachments from this program directly from MailmaX.400 for Windows.

WordPerfect for Windows has not assigned a unique file type. To start WordPerfect for

Windows automatically, the program must be located in a directory that is part of the

path. To define PATH, you must use the Control Panel System/Environment/Path

setting.

MailmaX.400 will start some programs (AmiPro, JETFORM Filler/G...) with a copy of

the document file. This means that any editing changes performed in the document or

form will not be stored. Changes are not copied back to MailmaX.400 or to the original

file.

You can get around this problem by using the “Send” command once more to mail a

new copy of the edited document.

89
F i le format recogni t ion
Mai lmaX.400 for Windows Programmer 's Guide

8. File format recognition

When reading and writing a message, MailmaX.400 automatically identifies the format

of the attached documents by comparing their contents with the definitions in the

DOCMAGIC file. This file is an ASCII file with key information about the file formats

that various programs use.

The file is divided into two sections:

[User]

User-defined entries. These will be checked before the system-defined entries. The user

section will not be changed / overwritten by the MailmaX.400 installation job.

The ‘User’ section can be used to define the file format of work group applications,

forms applications, etc.

[System]

The system-defined part of the table. This section will be totally overwritten by the

MailmaX.400 installation job.

You should never change the ‘System’ section. If there is an error in it, copy the entry to

the ‘User’ section and correct it, and then report the problem to your MailmaX.400

distributor.

Each line in the file contains the definition of one file format. One definition contains

the following information:

Position content application extension filter X.400 format fieldtypename format description.

The following example shows the definitions needed in DOCMAGIC to allow

MailmaX.400 to recognize attached documents produced in Microsoft Excel version 4

and Lotus AmiPro version 3:

P o s ty p e co n t en t a p p l ex t f i l t X . 4 0 0 n a m e d es cr ip t io n .

0 s t r i n g \ 0 1 1 \ 0 0 4 \ 0 0 6 E x ce l " . X L S " N O N E B I L A T E RA L E x ce l B I F F 4 . 0 f i le

> 6 b y te 1 6 E x ce l " . X L S " N O N E B I L A T E RA L E x ce l E x ce l 4 . 0
W o rk s p a ce

> 6 b y te 3 2 E x ce l " . X L S " N O N E B I L A T E RA L E x ce l E x ce l 4 . 0
G ra p h

> 6 b y te 6 4 E x ce l " . X L S " N O N E B I L A T E RA L E x ce l E x ce l 4 . 0
M a c ro

> 6 s t r i n g \ 0 0 0 \ 0 0 1 E x ce l " . X L W " N O N E B I L A T E RA L E x ce l E x ce l 4 . 0
w o r ks p a c e

A m i P ro

0 s t r i n g [v er] A m ip r o " . S A M " co p y to tem p B I L A T E RA L A m iP ro
 A m iP ro d o c

>1 1 s t r i n g [s ty] A m ip r o " . S A M " co p y to tem p B I L A T E RA L A m iP ro
 A m iP ro d o c

E x a m p le w i th f i l te r

0 s t r i n g [v er] A m ip r o " . S A M " C : \ m a i lm a x \ s ta r ta m i . p i f B I L A T E RA L A m iP ro

0 s t r i n g [s ty] A m ip r o " . S A M " C : \ m a i lm a x \ s ta r ta m i . p i f B I L A T E RA L A m iP ro

(l in es i n th e D OC M A G I C . f i l e m u s t b e u n b r o ken)

90
F i le format recogni t ion
Mai lmaX.400 for Windows Programmer 's Guide

The “>” character in DOCMAGIC means “logical or” between lines.

When you edit DOCMAGIC, you can use one or more spaces, or a tab, as a delimiter

between the parameters.

Parameters:

The parameters in the example are:

Position:

the position of the byte in the file from which it is possible to recognize elements that

identify the document.

Type:

‘Byte’ or ‘String’. Specify a byte as parameter 2 if the value is to be searched for in the

specified position is a byte; a string to search for a text string that starts at the specified

position.

Content:

Specify the value in the byte or the content in the text string that identifies the document

type.

/xxx/xxx/ is taken as a set of octal values

<string> is taken as a character string

Application:

The name of an application that can handle the document type.

Fi le type:

Used to look up in the EXTENSIONS section in the WIN.INI and in the Windows

REGEDIT database file to find the correct application to handle the file type.

Also used to suggest a proper file extension for the file when the command File/Export

is given.

Fi lter:

A program that will be run with the file as a parameter before the application is started.

Special values:

 - NONE No program

 - copytotemp The file will be copied to a temporary file before the

 application is given this temporary file as a parameter.

 (used for applications that perform strict file-locking)

 - <program>

X.400 document type:

Defines the attachment type that the underlying X.400 system will use for files of this

type.

Possible values are IA5 (text files) and BILATERAL (binary data).

Format name:

A short description of the document type.

91
F i le format recogni t ion
Mai lmaX.400 for Windows Programmer 's Guide

Description:

A descriptive text that explains which document type this is. This text is used in the

message view window when an attachment of this type is in focus, and in the

attachment list given by the command View/Documents.

92
UA-FI based appl icat ions wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

9. UA-FI based applications with
MailmaX.400

The Mail Spooler in MailmaX.400 for Windows implements a feature that makes it

possible to integrate a UA-FI based (often MS-DOS based) application with

MailmaX.400.

NOTE: For more information on MaXware UA-FI, see the manual “MaXware UA-FI

Programmer’s Guide”.

For an overview of how this option is intended to be used, see the section “Scenario:

MailmaX.400 user with automatic routing of EDI documents to an EDI application” in

the document “Programming towards the MaXware products”.

To use the feature, your application or your installation job must insert an INCLUDE

statement in the [UA] section of the MAXWARE.INI file. If there is more than one user

defined in MailmaX.400 on that PC, the INCLUDE statement can be inserted in the

[User.<user name>] section for the user who is currently logged on instead. The Mail

Spooler will look at both the [User.<user name>] section and the [UA] section, and if

one INCLUDE statement is found in each of the sections, both will be used.

The syntax of the INCLUDE statement is:

INCLUDE-FILE= <command file name with path>

INCLUDE-RESPONSE=<response file name with path>

INCLUDE-FIRST= 1/0

Parameters:

<command file name with path>: The file name of any legal UA-FI command file.

Normally this file should contain a FETCH statement with a filter to fetch all messages

intended for this application, and zero or more SUBMIT statements used to submit

messages on behalf of the application.

<response file name with path>: The name of a file to receive the output from the UA-

FI communication session. Normally, this file name should be defined with a

placeholder for a sequence number, to avoid overwriting old communication results.

If the parameter to the INCLUDE-FIRST statement is 1, or the statement is not used, the

included operations will be performed before any MailmaX.400 operations.

If the parameter to the INCLUDE-FIRST statement is 0, the included operations are

performed after the standard MailmaX.400 operations.

The placeholder is defined with a maximum of 4 question marks. Examples:

edi????.rsp edi001.rsp, edi0002.rsp, edi0003.rsp, etc.

edirsp.??? edirdp.001, edirsp.002, edirsp.003, etc.

(Avoid .b?? if the messages are fetched to the same directory as the response file, as

message BodyParts (attachments) automatically get .b00, .b01 extensions).

The number will always start with the lowest free number, so your application should

normally delete or rename each response file as it is processed to avoid processing the

same response file more than once.

Notes on the UA-FI command file you need to use:

93
UA-FI based appl icat ions wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

SUBMIT:

It is not necessary to include any SUBMIT statements if your application uses UA-FI

directly for sending. If this is done, the INCLUDE Statement and the Command file it is

pointing to can be completely static and installed by your application’s installation

program.

Fetch fi lters:

You should use a filter that selects all the messages that are intended for your

application and no other messages. If you need to filter on more than one criterion, you

can specify these in the same FETCH statement, or you can use several FETCH

statements in the same INCLUDE file.

Fetch path:

If, in the path parameter to the FETCH statement, you give a path for the resulting

messages, your application can be programmed always to check for “*.b??” files in this

directory, and to delete each file when it has been processed. If you need to inspect the

response file anyway to get delivery reports and notifications, you should use the

FETCHED= statements in the response file to find new messages and files.

Multiple Fetches:

There is always a possibility that a message arrives in the user’s mailbox after your

FETCH statement has been initiated, and before the standard FETCH statements of

MailmaX.400 are initiated. These messages will arrive in the user’s INTRAY and not in

your response file. To minimize the problem, always repeat your FETCH statement(s)

in your command file. The last statement will normally return NONE, and, since this is

a fast operation, the time interval in which messages can end up in the wrong place will

be as small as possible.

To make sure no messages are lost, you should also define your document type in

DOCMAGIC and supply a small program that can copy the file to your in-queue when

the user double-clicks on the attachment.

Example:

In your installation job, install the following in the [UA] section:

INCLUDE-FILE : c:\EDI\edi.cmd

INCLUDE-RESPONSE : c:\EDI\edi???.rsp

And install the file c:\EDI\edi.cmd:

Fetch : <s=EDI;o=Fastspeed;a=TelemaX;c=no Delete> c:\EDI

Fetch : <s=EDI;o=Fastspeed;a=TelemaX;c=no> Delete c:\EDI

(Note that the same FETCH statement is repeated to minimize the interval between

initiating the last FETCH and starting the normal MailmaX.400 fetch operation).

In your EDI application, you should check at startup if there are any files

c:\EDI\edi???.rsp.

If there are one or more such files, process them, and delete them afterwards.

94
UA-FI based appl icat ions wi th Mai lmaX.400
Mai lmaX.400 for Windows Programmer 's Guide

If you do not need the response file info, you can fetch the files (BodyParts) directly.

(You can do this if your project uses the EDIFACT CONTROL messages and not the

X.400 receipts, and you trust the user to re-send any messages that have not been

confirmed by a CONTROL message within a reasonable time, and the EDI addresses

inside the EDI Interchange are enough for your EDI application). To do this, simply

check for files with the name “c:\EDI*.b??”, and delete / rename each file when

processed.

95
Address syntax
Mai lmaX.400 for Windows Programmer 's Guide

10. Address syntax
MaXware Simple MAPI accepts X.400 addresses (O/R-Names) compliant with a string

format defined in the ITU/TS specification F.400 (1992).

The addresses consist of a list of address elements in the format:

keyword=key value;

Example:

“s=maxware;o=maxware;a=maxware;c=no”

for an address consisting of Surname: MaXware, Organization: MaXware; ADMD:

Telemax and Country code: NO (Norway).

Keywords accepted:

 C Country

 A Administrative management domain name (service provider)

 S Surname

 G Given name

 I Initials

 Q Generation qualifier (to distinguish between users with identical names, for

example father and son, using Sr. and Jr.)

 X.121 The X.121-address (network address)

 T-ID Terminal identifier

 P Private management domain name

 O Organization name

 OU1 Organization unit name 1

 OU2 Organization unit name 2

 OU3 Organization unit name 3

 OU4 Organization unit name 4

 N-ID Numeric user identifier

 T-ID Terminal identifier

 T-TY Terminal type

 DDA: Domain-defined attribute 1 - 4. This part has the syntax

DDA:type=value

where “type” is the type, and “value” is the attribute itself. Both

must contain only printable string characters (see below). You can

use this, for example, to address users on a network that is

connected to the X.400 service through a gateway:

DDA:RFC-822=Harald(a)vax.delab.nth.edu

 FREEFORM Freeform name. Header elements only (primary, copy and p2_originator)

Special keywords used to access a “Physical Delivery” (postal) service:

 CN Common name

 PD-PN Physical delivery personal name

 PD-EA Physical delivery extension O/R name components

 PD-ED Physical delivery extension name components

96
Address syntax
Mai lmaX.400 for Windows Programmer 's Guide

 PD-OFN Physical delivery office number

 PD-OF Physical delivery office name

 PD-O Physical delivery organization name

 PD-S Street address

 PD-A Unformatted postal address

 PD-U Unique postal name

 PD-L Local postal attributes

 PD-R Poste restante address

 PD-B Post office box address

 PD-PC Postal code

 PD-SN PDS name

 PD-C Physical delivery country name

97
The MAXWARE. INI f i le
Mai lmaX.400 for Windows Programmer 's Guide

11. The MAXWARE.INI file
The file MAXWARE.INI contains the configuration for MailmaX.400 for Windows.

The location and name of the MAXWARE.INI file is defined in the WIN.INI entry:

MailmaX

In i t f i l e =< pa t h a n d f i l e na me >

The MailmaX.400 installation program sets this path and file name, and they must NOT

be changed. If they are changed, MailmaX.400 will not find all its files.

The various sections and parameters are documented in the manual “Configuration

Guide for MaXware Products”.

98
Address and message templates
Mai lmaX.400 for Windows Programmer 's Guide

12. Address and message templates
The FORMS.INI file contains address templates for MailmaX.400 for Windows:

The address templates are small “form” definitions used to make it easy for the user to

fill in information for the various address types. There is one .FRM file for each service

provider profile. Normally, the file contains one address template for each gateway on

the server (fax, telex, Internet etc.), one address template for each (if any) query-by-mail

service at the service provider, and one DefineUser template used for the “Create new

user” dialog.

The file format of the <service profile>.FRM files is documented in the manual

“Configuration Guide for MaXware Products”.

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

99

13. Appendix B: MailFile - A
MailmaX.400 extension

13.1 Introduction
‘Mailfile’ is an integrated part of MailmaX.400 for Window. It defines a simple

interface to enable other applications to submit a single file as an attachment to an

outgoing message.

Integrated and installed with MailmaX.400, it makes it possible to use the ‘Send to...’

function in Windows Explorer to send any single file selected. It also builds a link

between Microsoft Internet Explorer and MailmaX.400 so that when you click on a

‘MailTo:’ link, MailmaX.400 will be used as the email application.

The screenshot below shows what you will see if you start the MAILFILE.EXE

program without any parameters on the command line.

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

100

13.2 Installation
There is no installation program! Just copy the program file to your MailmaX.400

directory. That’s all.

The 32-bit version is automatically installed together with MailmaX.400. The (un-

)install options shown in the screenshot apply only to the 32-bit version. This option

will not (un-)install the program, but just update the Windows Registry setting to enable

Explorer or Internet Explorer to use MailmaX.400 as its e-mail application.

The program must be manually installed as a desktop icon with properly defined

command-line options if required.

To install MailFile as a desktop icon:

• Click with the right-mouse button on the Desktop and select “New/Shortcut”.

• In the “Create Shortcut” dialog you must fill in the “Command Line” field

completely. (See below).

• Click “Next” and select the name for the shortcut that will appear on the desktop.

• Click “Finish”.

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

101

13.3 MailFile – How it works
When MailFile is started, the command-line parameters is passed on to the program and

executed. MailmaX.400 will be started automatically if it is not already running. The

command-line options are described below.

13.3.1 Some command-line examples:

mailfi le /Instal l

Update the 32-bit Windows registry so ‘MailTo:’ will work from Microsoft Internet

Explorer.

mailfi le /Uninstal l

Remove the 32-bit Windows registry added using the /Install option.

mailfi le /Run

Activate MailmaX.400 without sending anything.

mailfi le c:\windows\win.ini

MailmaX.400’s Compose window will be opened, without any subject field or

recipients filled in. The file ‘C:\WINDOWS\WIN.INI’ will be attached to the message.

The path is required only if the file is not in the default directory. The document is sent

as TEXT or DATA, depending on the content of the file. This cannot be configured

from the command line.

mailfi le message.doc /Fi le=names.txt
/Subject=My Message/Auto

The file ‘MESSAGE.DOC’ in the default directory is attached to a message with the

subject ‘My message’. The recipient(s) of the message are read from the file

‘NAMES.TXT’. If all recipients are correctly defined, the message is prepared for

sending and the Compose window is closed. (See details about the syntax of the address

file below).

mailfi le message.doc
/A=Office,G=James;S=Bond;P=007;A=Secret;C=ww
/Subject=Secret

The file ‘MESSAGE.DOC’ is attached to a message addressed to the address-book

nickname ‘Office’ and the complete X.400-address of a Mr. James Bond (who is not in

the address book). The message subject is ”Secret”, and the Compose window is left

open for the sender to include more recipients or text.

13.3.2 Syntax of the address-list file: (/File=)

The file is built up as a general Windows .INI file with sections, keywords and values.

Every address has to be in a separate, unique section. The section name itself is not

important for the mail file, but may be useful to external programs. Every section must

have one ‘addr=’ keyword, and the value must have the same format as if you typed the

addresses manually with the /A= option. All sections will be included in the recipient

list for the message.

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

102

Example:

[1]

addr=Office

[2]

addr=G=James;S=Bond;P=007;A=Secret;C=ww/Subject=Secret

[n]

addr=

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

103

13.4 Hints

13.4.1 MailmaX.400 start-up:

MailmaX.400 will be started if it is not already running. The user will then have to type

his or her user name and password. If you like, you can include the password in a

special variable in MAXWARE.INI to perform an automatic login.

[M a i lm a x]

U s e rN a m e =L o g in N a m e

P a s s w o rd = P a s s w o r d

This should be used with care, but in a secure environment this can be used for

automating the sending of messages to an even greater extent.

13.4.2 Mail Spooler set-up

The Mail Spooler can be configured to connect to the Message Store every time there is

one message ready to be sent. MailFile used with the /Auto option will generate such

messages. It may be convenient for the user simply to use the MailFile icon, never

needing to click on the telephone-pole icon in MailmaX.400.

13.4.3 Run minimized

The Mail Spooler will always run as an icon, but if you also start MailmaX.400 and the

UA-FI communication window as icons, the operations here may go totally unattended

by the user. This is also faster because no screen update will take place. To make

MailmaX.400 and UA-FI run iconized, just minimize them when you see them, and

they will appear as icons the next time.

13.4.4 Automatic recognition of SMTP
addresses

The service-profile’s FRM-file may be configured with an Internet gateway address,

making it possible to type SMTP addresses directly in the address-string. This general

MailmaX.400 feature can be used to simplify addressing when addresses are collected

inside another application that is using this syntax.

Appendix B: Mai lF i le - A Mai lmaX.400 Extens ion
Mai lmaX.400 for Windows Programmer 's Guide

104

13.5 Known problems

13.5.1 Same message sent twice

Starting MailmaX.400 and look-ups in the address-book may take a little too long for

the MailFile application in some cases. Because the connection between MailFile and

MailmaX.400 is based on DDE, the MailFile application may think that the submission

failed, and try again, with the result that the same message/file is sent twice! To solve

this problem, we recommend the following:

• Start MailmaX.400 manually instead of automatically.

• Use the full X400-addresses instead of nicknames.

• Be careful with the /Auto –option.

13.5.2 Original file-name not (always)
maintained

An attached file will be copied to the temp directory before being attached to an

outgoing message. As a result of this, the original file name is not used on the

attachment if you look at the Message/Properties in your Outtray.

